-
Notifications
You must be signed in to change notification settings - Fork 27
/
data_loader.py
350 lines (314 loc) · 14.6 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# -*- coding: utf-8 -*-
# Copyright (c) 2016 - zihao.chen <[email protected]>
"""
Author: zihao.chen
Create Date: 2019/10/16
Modify Date: 2019/10/16
descirption: 图像分类问题的一个通用性三元组数据装载器
“A generic triplet data loader for image classification problems”
"""
from PIL import Image
import os
import copy
import time
import threading
import math
import random
from concurrent.futures import ThreadPoolExecutor, as_completed
import torch
import numpy as np
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def has_file_allowed_extension(filename, extensions):
return filename.lower().endswith(extensions)
def is_image_file(filename):
return has_file_allowed_extension(filename, IMG_EXTENSIONS)
def pil_loader(path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
class DataLoader(object):
def __init__(self, root_path, transforms=None, batch_size=1, shuffle=True, num_workers=1):
self.work_path = root_path
self.transforms = None
if not transforms is None:
self.transforms = transforms
self.shuffle = shuffle
self.batch_size = batch_size
self.num_workers = num_workers
self.database = {}
self.lable_package = {}
self.init_img_parms()
self.loader = pil_loader
self.create_triplet_db()
self.data_queue = []
self.lable_queue = []
self.data_queue_lock = threading.Lock()
self.data_load_thread = threading.Thread(target=self.data_load)
self.data_load_thread.start()
self.start = 0
self.end = math.ceil(len(self.triplet_db) / (self.batch_size * 1.0)) - 1
self.remainder = len(self.triplet_db) % self.batch_size
def init_img_parms(self):
self.lables = os.listdir(self.work_path)
self.lables.sort()
self.lables_map = dict(zip(self.lables, range(len(self.lables))))
for lable in self.lables:
lable_path = os.path.join(self.work_path, lable)
if not os.path.isdir(lable_path):
continue
self.lable_package[self.lables_map[lable]] = {}
lable_imgs = os.listdir(lable_path)
lable_imgs.sort()
for lable_img in lable_imgs:
if is_image_file(lable_img):
sample = [os.path.join(lable_path, lable_img), self.lables_map[lable]]
self.database["%s_%s" % (lable, lable_img)] = sample
self.lable_package[self.lables_map[lable]][lable_img] = sample
self.targets = [d[1] for d in self.database.values()]
def __getitem__(self, index):
path, target = self.database[index]
sample = self.loader(path)
if self.transforms is not None:
sample = self.transforms(sample)
return sample, target
def __iter__(self):
return self
def __next__(self):
if self.start == 0 and len(self) == 0:
# print ('重新开始 剩余缓冲 %d' % len(self.data_queue))
self.create_triplet_db()
self.data_load_thread = threading.Thread(target=self.data_load)
self.data_load_thread.start()
if self.start < self.end:
# print (self.start)
# print ('剩余缓冲 %d' % len(self.data_queue))
self.start += 1
while len(self.data_queue) < self.batch_size:
time.sleep(0.2)
with self.data_queue_lock:
sample_tuple = (self.data_queue[:self.batch_size], self.lable_queue[:self.batch_size])
del self.data_queue[:self.batch_size]
del self.lable_queue[:self.batch_size]
return sample_tuple
elif self.start == self.end:
# print (self.start)
# print ('end 剩余缓冲 %d' % len(self.data_queue))
self.start += 1
while len(self.data_queue) < self.remainder:
time.sleep(0.2)
with self.data_queue_lock:
sample_tuple = (self.data_queue[:self.batch_size], self.lable_queue[:self.batch_size])
del self.data_queue[:self.batch_size]
del self.lable_queue[:self.batch_size]
return sample_tuple
else:
# print (self.start)
# print ('stop 剩余缓冲 %d' % len(self.data_queue))
self.start = 0
raise StopIteration
def __len__(self):
return len(self.triplet_db)
def create_triplet_db(self):
self.triplet_db = []
anchor_db = copy.deepcopy(self.lable_package)
positive_db = copy.deepcopy(self.lable_package)
negative_db = copy.deepcopy(self.database)
# positive_db_keys = positive_db.keys()
# np.random.shuffle(positive_db_keys)
# positive_db_keys = [positive_db_keys[-1]] + positive_db_keys[:-1]
# for positive_db_key in positive_db_keys:
# lable_samples = positive_db[positive_db_key]
# lable_sample_keys = lable_samples.keys()
# lable_sample_keys = [lable_sample_keys[-1]] + lable_sample_keys[:-1]
# for key, sample in anchor_db.items():
# lable_i = sample[1]
# img_path = sample[0]
anchor_db_keys = list(anchor_db.keys())
if self.shuffle:
random.shuffle(anchor_db_keys)
for lable in anchor_db_keys:
lable_samples_anchor = anchor_db[lable]
lable_samples_positive = positive_db[lable]
if len(lable_samples_anchor) == 0:
continue
lable_sample_anchor_keys = list(lable_samples_anchor.keys())
if self.shuffle:
random.shuffle(lable_sample_anchor_keys)
if len(lable_samples_anchor) == 1:
# print (1)
# 某类别样本数量为1时,使用和样本数量为2相同的取法,但是结果是一张图复制了两份,因为[x[-1]]和x[:1]是相同的,不知这种情况会导致训练出现什么效果。
# 如果可以的话直接continue 似乎也不错,因为样本有足够的概率出现在负样本中
# lable_sample_anchor_keys = list(lable_samples_anchor.keys())
lable_sample_positive_keys = [lable_sample_anchor_keys[-1]] + lable_sample_anchor_keys[:1]
elif len(lable_samples_anchor) == 2:
# print (2)
# lable_sample_anchor_keys = list(lable_samples_anchor.keys())
lable_sample_positive_keys = [lable_sample_anchor_keys[-1]] + lable_sample_anchor_keys[:1]
else:
# lable_sample_anchor_keys = list(lable_samples_anchor.keys())
# lable_sample_positive_keys = [lable_sample_anchor_keys[-1]] + lable_sample_anchor_keys[:-1]
mid_index = len(lable_sample_anchor_keys) // 2
lable_sample_anchor_keys[mid_index], lable_sample_anchor_keys[-1] = lable_sample_anchor_keys[-1], \
lable_sample_anchor_keys[mid_index]
lable_sample_positive_keys = lable_sample_anchor_keys[::-1]
for key_index in range(len(lable_sample_anchor_keys)):
sample_anchor = lable_samples_anchor[lable_sample_anchor_keys[key_index]]
sample_positive = lable_samples_positive[lable_sample_positive_keys[key_index]]
sample_lable = sample_anchor[1]
while True:
sample_nagetive = None
for key, value in negative_db.items():
if value[1] != sample_lable:
sample_nagetive = negative_db[key]
del negative_db[key]
break
if sample_nagetive is None:
negative_db = copy.deepcopy(self.database)
else:
break
triplet_sample = [sample_anchor, sample_positive, sample_nagetive]
self.triplet_db.append(triplet_sample)
if self.shuffle:
random.shuffle(self.triplet_db)
def data_load(self):
# 既然都用了线程池和队列,起码也得放10个样本意思意思
big_batch_pool_szie = self.batch_size * 3 if self.batch_size * 3 > 10 else 10
executor = ThreadPoolExecutor(max_workers=self.num_workers)
while True:
# print ("test log: 数据池剩余:%s\t缓冲池剩余%s" % (len(self), len(self.data_queue)))
if len(self.data_queue) > big_batch_pool_szie:
time.sleep(0.4)
else:
try:
pop_length = self.batch_size if len(self) > self.batch_size else len(self)
if pop_length == 0:
break
# print ("load length: %d" % pop_length)
temp_samples = [self.triplet_db.pop() for i in range(pop_length)]
all_task = [executor.submit(self.load_sample, (sample)) for sample in temp_samples]
for future in as_completed(all_task):
data = future.result()
except Exception as e:
# print ("load error: %s" % e)
break
return
def load_sample(self, sample):
temp_imgs = []
temp_targets = []
for sp in sample:
path = sp[0]
target = sp[1]
sample_image = self.loader(path)
# 我本人使用pytorch框架,所以直接使用pytorch提供的transform将图像转换为tensor
# 如果不使用pytorch框架,返回的就是普通的PIL image对象,您也可以自由更改您想用的transform,
# 只要稍微对if内的代码做一些改动。
#
# I myself use the pytorch framework, so use the transform provided by pytorch
# to convert the image to tensor.
# If you don't use the pytorch framework, the method returns the normal PIL image object.
# You can also freely change the transform you want to use,
# just make some changes to the code inside the if.
if self.transforms is not None:
sample_image = self.transforms(sample_image)
# import torch # 调整到文件首行
target = torch.tensor(target)
temp_imgs.append(sample_image)
temp_targets.append(target)
with self.data_queue_lock:
self.data_queue.append(temp_imgs)
self.lable_queue.append(temp_targets)
return True
def check_data(self):
for index in range(len(self.triplet_db)):
[sample_anchor, sample_positive, sample_nagetive] = self.triplet_db[index]
assert sample_anchor[1] == sample_positive[1]
assert sample_anchor[1] != sample_nagetive[1]
assert sample_anchor[0] != sample_positive[0]
assert sample_anchor[0] != sample_nagetive[0]
triplet_imgs = [sample[0][0] for sample in self.triplet_db]
triplet_imgs.sort()
base_imgs = [sample[0] for key, sample in self.database.items()]
base_imgs.sort()
for i in range(len(triplet_imgs)):
assert triplet_imgs[i] == base_imgs[i]
if __name__ == '__main__':
import torch
import torchvision.transforms as transforms
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.RandomSizedCrop(224),
# transforms.CenterCrop(15),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
count = 0
batch_size = 50
epochs = 40
for epoch in range(0, epochs):
print ('=' * 20)
train_loader = DataLoader(root_path='/home/meteo/zihao.chen/data/HBQ/Cloud_357/class_label_B4/3_work/train',
batch_size=batch_size, num_workers=8, transforms=transform)
for i, sample in enumerate(train_loader):
try:
print ('load data %d' % (i))
# print (type(input))
input, target = sample
temp_batch = len(input)
temp_x = [torch.stack(input[i], dim=0) for i in range(len(input))]
temp_y = [torch.stack(target[i], dim=0) for i in range(len(target))]
new_x = torch.stack(temp_x, dim=0)
new_y = torch.stack(temp_y, dim=0)
new_x = [new_x[:, i] for i in range(3)]
new_y = [new_y[:, i] for i in range(3)]
sample_input = torch.cat(new_x, 0)
sample_target = torch.cat(new_y, 0)
target = sample_target.cuda(async=True)
input_var = torch.autograd.Variable(sample_input)
target_var = torch.autograd.Variable(target)
# compute output
anchor = input_var[:temp_batch]
positive = input_var[temp_batch:(temp_batch * 2)]
negative = input_var[-temp_batch:]
assert anchor.size() == positive.size()
assert anchor.size() == negative.size()
except Exception as e:
print ('input len :%s' % len(input))
print ('target len :%s' % len(target))
print ('new_x len :%s' % len(new_x))
print ('new_y len :%s' % len(new_y))
print ('sample_input size :')
print (sample_input.size())
print ('sample_target size :')
print (sample_target.size())
print (anchor.size())
print (positive.size())
print (negative.size())
# s_t = time.time()
# x = []
# for i in range(len(input)):
# x.append(torch.stack(input[i], dim=0))
# new_v = torch.stack(x, dim=0)
#
# print (time.time() - s_t)
#
# count += len(input)
# print (count)
# print (type(input[0]))
# time.sleep(1)
# sample = next(train_loader)
# input, target = sample
# print (input[0][0].size())
# s_t = time.time()
# x = []
# for i in range(len(input)):
# x.append(torch.stack(input[i], dim=0))
# new_v = torch.stack(x, dim=0)
#
# sample_anchor = new_v[:, 0]
# sample_positive = new_v[:, 1]
# sample_nagetive = new_v[:, 2]
# sample_input = torch.cat([sample_anchor, sample_positive, sample_nagetive], 0)
# print (time.time() - s_t)
# print (sample_input.size())