-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgradcam_visual.py
148 lines (132 loc) · 7.07 KB
/
gradcam_visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import time
import argparse
import numpy as np
from models.gradcam import YOLOV5GradCAM
from models.yolo_v5_object_detector import YOLOV5TorchObjectDetector
import cv2
from deep_utils import Box, split_extension
target = ['model_30_cv1_act', 'model_30_cv2_act', 'model_30_cv3_act', \
'model_33_cv1_act', 'model_33_cv2_act', 'model_33_cv3_act', \
'model_36_cv1_act', 'model_36_cv2_act', 'model_36_cv3_act']
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', type=str, default="/home/shen/Chenyf/exp_save/multispectral-object-detection/5m_NiNfusion/weights/best.pt", help='Path to the model')
parser.add_argument('--source1', type=str, default='/home/shen/Chenyf/kaist/visible/test', help='source') # file/folder, 0 for webcam
parser.add_argument('--source2', type=str, default='/home/shen/Chenyf/kaist/infrared/test', help='source') # file/folder, 0 for webcam
parser.add_argument('--output-dir', type=str, default='/home/shen/Chenyf/kaist/Grad_CAM_visual/outputs_nin_head', help='output dir')
parser.add_argument('--img-size', type=int, default=640, help="input image size")
parser.add_argument('--target-layer', type=str, default=target,
help='The layer hierarchical address to which gradcam will applied,'
' the names should be separated by underline')
parser.add_argument('--method', type=str, default='gradcam', help='gradcam or gradcampp')
parser.add_argument('--device', type=str, default='cpu', help='cuda or cpu')
parser.add_argument('--names', type=str, default='person',
help='The name of the classes. The default is set to None and is set to coco classes. Provide your custom names as follow: object1,object2,object3')
#'person, car, bicycle'
args = parser.parse_args()
def get_res_img2(heat, mask, res_img):
mask = mask.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8)
heatmap = cv2.applyColorMap(mask, cv2.COLORMAP_JET)
n_heatmat = (heatmap / 255).astype(np.float32)
heat.append(n_heatmat)
return res_img, heat
def get_res_img(bbox, mask, res_img):
mask = mask.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8)
heatmap = cv2.applyColorMap(mask, cv2.COLORMAP_JET)
#n_heatmat = (Box.fill_outer_box(heatmap, bbox, value=0) / 255).astype(np.float32)
n_heatmat = (heatmap / 255).astype(np.float32)
res_img = cv2.addWeighted(res_img, 0.7, n_heatmat, 0.3, 0)
res_img = (res_img / res_img.max())
return res_img, n_heatmat
def put_text_box(bbox, cls_name, res_img):
x1, y1, x2, y2 = bbox
# this is a bug in cv2. It does not put box on a converted image from torch unless it's buffered and read again!
#cv2.imwrite('temp.jpg', (res_img * 255).astype(np.uint8))
#res_img = cv2.imread('temp.jpg')
res_img = Box.put_box(res_img, bbox)
#res_img = Box.put_text(res_img, cls_name, (x1 - 3, y1))
# res_img = Box.put_text(res_img, str(round((float(cls_name)+0.40), 2)), (x1-3, y1))
return res_img
def concat_images(images):
w, h = images[0].shape[:2]
width = w
height = h * len(images)
base_img = np.zeros((width, height, 3), dtype=np.uint8)
for i, img in enumerate(images):
base_img[:, h * i:h * (i + 1), ...] = img
return base_img
def main(img_vis_path, img_ir_path):
device = args.device
input_size = (args.img_size, args.img_size)
img_vis, img_ir = cv2.imread(img_vis_path), cv2.imread(img_ir_path)
print('[INFO] Loading the model')
# load model
model = YOLOV5TorchObjectDetector(args.model_path, device, img_size=input_size,
names=None if args.names is None else args.names.strip().split(","), confidence=0.3)
# preprocess the images
torch_img_vis, torch_img_ir = model.preprocessing(img_vis[..., ::-1], img_ir[..., ::-1])
result = torch_img_vis.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy()
result = result[..., ::-1] # convert to bgr
images = []
if args.method == 'gradcam':
for layer in args.target_layer:
saliency_method = YOLOV5GradCAM(model=model, layer_name=layer, img_size=input_size)
tic = time.time()
masks, logits, [boxes, _, class_names, confs] = saliency_method(torch_img_vis, torch_img_ir)
print("total time:", round(time.time() - tic, 4))
res_img = result.copy()
res_img = res_img / 255
heat = []
for i, mask in enumerate(masks):
bbox = boxes[0][i]
mask = mask.squeeze(0).mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8)
heatmap = cv2.applyColorMap(mask, cv2.COLORMAP_JET)
n_heatmat = (heatmap / 255).astype(np.float32)
heat.append(n_heatmat)
#res_img, heat_map = get_res_img(bbox, mask, res_img)
#res_img = put_text_box(bbox, cls_name, res_img) # plot the bboxes
#images.append(res_img)
if(len(heat) != 0):
heat_all = heat[0]
for h in heat[1:]:
heat_all += h
heat_avg = heat_all / len(heat)
res_img = cv2.addWeighted(res_img, 0.3, heat_avg, 0.7, 0)
res_img = (res_img / res_img.max())
cv2.imwrite('temp.jpg', (res_img * 255).astype(np.uint8))
heat_map = cv2.imread('temp.jpg')
# for i, mask in enumerate(masks):
# bbox, cls_name, conf = boxes[0][i], class_names[0][i], str(confs[0][i])
# heat_map = put_text_box(bbox, conf, heat_avg) # plot the bboxes
final_image = heat_map
images.append(final_image)
# save the images
suffix = '-res-' + layer
img_name = split_extension(os.path.split(img_vis_path)[-1], suffix=suffix)
output_path = f'{args.output_dir}/{img_name}'
os.makedirs(args.output_dir, exist_ok=True)
print(f'[INFO] Saving the final image at {output_path}')
cv2.imwrite(output_path, final_image)
img_name = split_extension(os.path.split(img_vis_path)[-1], suffix='_avg')
output_path = f'{args.output_dir}/{img_name}'
img_all = images[0].astype(np.uint16)
for img in images[1:]:
img_all += img
img_avg = img_all / len(images)
cv2.imwrite(output_path, img_avg.astype(np.uint8))
if __name__ == '__main__':
if os.path.isdir(args.source1):
img_vis_list = os.listdir(args.source1)
img_vis_list.sort()
for item in img_vis_list[1127:]:
img_vis_path = os.path.join(args.source1 ,item)
if args.source1 == '/home/shen/Chenyf/FLIR-align-3class/visible/test':
new_item = item[:-4] + '.jpeg'
img_ir_path = os.path.join(args.source2, new_item)
else:
img_ir_path = os.path.join(args.source2, item)
main(img_vis_path, img_ir_path)
print(item)
else:
main(img_vis_path, img_ir_path)