-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconfluence.py
174 lines (151 loc) · 8.62 KB
/
confluence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
Author: Andrew Shepley
Contact: [email protected]
Source: Confluence
Methods
a) assign_boxes_to_classes
b) normalise_coordinates
c) confluence_nms - returns maxima scoring box, removes false positives using confluence - efficient
d) confluence - returns most confluent box, removes false positives using confluence - less efficient but better box
"""
from collections import defaultdict
import numpy as np
def assign_boxes_to_classes(bounding_boxes, classes, scores):
"""
Parameters:
bounding_boxes: list of bounding boxes (x1,y1,x2,y2)
classes: list of class identifiers (int value, e.g. 1 = person)
scores: list of class confidence scores (0.0-1.0)
Returns:
boxes_to_classes: defaultdict(list) containing mapping to bounding boxes and confidence scores to class
"""
boxes_to_classes = defaultdict(list)
for each_box, each_class, each_score in zip(bounding_boxes, classes, scores):
if each_score >= 0.05:
boxes_to_classes[each_class].append(np.array([each_box[0],each_box[1],each_box[2],each_box[3], each_score]))
return boxes_to_classes
def normalise_coordinates(x1, y1, x2, y2,min_x,max_x,min_y,max_y):
"""
Parameters:
x1, y1, x2, y2: bounding box coordinates to normalise
min_x,max_x,min_y,max_y: minimum and maximum bounding box values (min = 0, max = 1)
Returns:
Normalised bounding box coordinates (scaled between 0 and 1)
"""
x1, y1, x2, y2 = (x1-min_x)/(max_x-min_x), (y1-min_y)/(max_y-min_y), (x2-min_x)/(max_x-min_x), (y2-min_y)/(max_y-min_y)
return x1, y1, x2, y2
def confluence_nms(bounding_boxes,scores,classes,confluence_thr,gaussian,score_thr=0.05,sigma=0.5):
"""
Parameters:
bounding_boxes: list of bounding boxes (x1,y1,x2,y2)
classes: list of class identifiers (int value, e.g. 1 = person)
scores: list of class confidence scores (0.0-1.0)
confluence_thr: value between 0 and 2, with optimum from 0.5-0.8
gaussian: boolean switch to turn gaussian decaying of suboptimal bounding box confidence scores (setting to False results in suppression of suboptimal boxes)
score_thr: class confidence score
sigma: used in gaussian decaying. A smaller value causes harsher decaying.
Returns:
output: A dictionary mapping class identity to final retained boxes (and corresponding confidence scores)
"""
class_mapping = assign_boxes_to_classes(bounding_boxes, classes, scores)
output = {}
for each_class in class_mapping:
dets = np.array(class_mapping[each_class])
retain = []
while dets.size > 0:
max_idx = np.argmax(dets[:, 4], axis=0)
dets[[0, max_idx], :] = dets[[max_idx, 0], :]
retain.append(dets[0, :])
x1, y1, x2, y2 = dets[0, 0], dets[0, 1], dets[0, 2], dets[0, 3]
min_x = np.minimum(x1, dets[1:, 0])
min_y = np.minimum(y1, dets[1:, 1])
max_x = np.maximum(x2, dets[1:, 2])
max_y = np.maximum(y2, dets[1:, 3])
x1, y1, x2, y2 = normalise_coordinates(x1, y1, x2, y2,min_x,max_x,min_y,max_y)
xx1, yy1, xx2, yy2 = normalise_coordinates(dets[1:, 0], dets[1:, 1], dets[1:, 2], dets[1:, 3],min_x,max_x,min_y,max_y)
md_x1,md_x2,md_y1,md_y2 = abs(x1-xx1),abs(x2-xx2),abs(y1-yy1),abs(y2-yy2)
manhattan_distance = (md_x1+md_x2+md_y1+md_y2)
weights = np.ones_like(manhattan_distance)
if (gaussian == True):
gaussian_weights = np.exp(-((1-manhattan_distance) * (1-manhattan_distance)) / sigma)
weights[manhattan_distance<=confluence_thr]=gaussian_weights[manhattan_distance<=confluence_thr]
else:
weights[manhattan_distance<=confluence_thr]=manhattan_distance[manhattan_distance<=confluence_thr]
dets[1:, 4] *= weights
to_reprocess = np.where(dets[1:, 4] >= score_thr)[0]
dets = dets[to_reprocess + 1, :]
output[each_class]=retain
return output
def confluence(bounding_boxes,scores,classes,confluence_thr,gaussian,score_thr=0.05,sigma=0.5):
"""
Parameters:
bounding_boxes: list of bounding boxes (x1,y1,x2,y2)
classes: list of class identifiers (int value, e.g. 1 = person)
scores: list of class confidence scores (0.0-1.0)
confluence_thr: value between 0 and 2, with optimum from 0.5-0.8
gaussian: boolean switch to turn gaussian decaying of suboptimal bounding box confidence scores (setting to False results in suppression of suboptimal boxes)
score_thr: class confidence score
sigma: used in gaussian decaying. A smaller value causes harsher decaying.
Returns:
output: A dictionary mapping class identity to final retained boxes (and corresponding confidence scores)
"""
class_mapping = assign_boxes_to_classes(bounding_boxes, classes, scores)
output = {}
for each_class in class_mapping:
dets = np.array(class_mapping[each_class])
retain = []
while dets.size > 0:
confluence_scores,proximities = [],[]
while len(confluence_scores)<np.size(dets,0):
current_box = len(confluence_scores)
x1, y1, x2, y2 = dets[current_box, 0], dets[current_box, 1], dets[current_box, 2], dets[current_box, 3]
confidence_score = dets[current_box, 4]
xx1,yy1,xx2,yy2,cconf = dets[np.arange(len(dets))!=current_box, 0],dets[np.arange(len(dets))!=current_box, 1],dets[np.arange(len(dets))!=current_box, 2],dets[np.arange(len(dets))!=current_box, 3],dets[np.arange(len(dets))!=current_box, 4]
min_x,min_y,max_x,max_y = np.minimum(x1, xx1),np.minimum(y1, yy1),np.maximum(x2, xx2),np.maximum(y2, yy2)
x1, y1, x2, y2 = normalise_coordinates(x1, y1, x2, y2,min_x,max_x,min_y,max_y)
xx1, yy1, xx2, yy2 = normalise_coordinates(xx1, yy1, xx2, yy2,min_x,max_x,min_y,max_y)
hd_x1,hd_x2,vd_y1,vd_y2 = abs(x1-xx1),abs(x2-xx2),abs(y1-yy1),abs(y2-yy2)
proximity = (hd_x1+hd_x2+vd_y1+vd_y2)
all_proximities = np.ones_like(proximity)
cconf_scores = np.zeros_like(cconf)
all_proximities[proximity <= confluence_thr] = proximity[proximity <= confluence_thr]
cconf_scores[proximity <= confluence_thr]=cconf[proximity <= confluence_thr]
if(cconf_scores.size>0):
confluence_score = np.amax(cconf_scores)
else:
confluence_score = confidence_score
if(all_proximities.size>0):
proximity = (sum(all_proximities)/all_proximities.size)*(1-confidence_score)
else:
proximity = sum(all_proximities)*(1-confidence_score)
confluence_scores.append(confluence_score)
proximities.append(proximity)
conf = np.array(confluence_scores)
prox = np.array(proximities)
dets_temp = np.concatenate((dets, prox[:, None]), axis=1)
dets_temp = np.concatenate((dets_temp, conf[:, None]), axis=1)
min_idx = np.argmin(dets_temp[:, 5], axis=0)
dets[[0, min_idx], :] = dets[[min_idx, 0], :]
dets_temp[[0, min_idx], :] = dets_temp[[min_idx, 0], :]
dets[0,4]=dets_temp[0,6]
retain.append(dets[0, :])
x1, y1, x2, y2 = dets[0, 0], dets[0, 1], dets[0, 2], dets[0, 3]
min_x = np.minimum(x1, dets[1:, 0])
min_y = np.minimum(y1, dets[1:, 1])
max_x = np.maximum(x2, dets[1:, 2])
max_y = np.maximum(y2, dets[1:, 3])
x1, y1, x2, y2 = normalise_coordinates(x1, y1, x2, y2,min_x,max_x,min_y,max_y)
xx1, yy1, xx2, yy2 = normalise_coordinates(dets[1:, 0], dets[1:, 1], dets[1:, 2], dets[1:, 3],min_x,max_x,min_y,max_y)
md_x1,md_x2,md_y1,md_y2 = abs(x1-xx1),abs(x2-xx2),abs(y1-yy1),abs(y2-yy2)
manhattan_distance = (md_x1+md_x2+md_y1+md_y2)
weights = np.ones_like(manhattan_distance)
if (gaussian == True):
gaussian_weights = np.exp(-((1-manhattan_distance) * (1-manhattan_distance)) / sigma)
weights[manhattan_distance<=confluence_thr]=gaussian_weights[manhattan_distance<=confluence_thr]
else:
weights[manhattan_distance<=confluence_thr]=manhattan_distance[manhattan_distance<=confluence_thr]
dets[1:, 4] *= weights
to_reprocess = np.where(dets[1:, 4] >= score_thr)[0]
dets = dets[to_reprocess + 1, :]
output[each_class]=retain
return output