-
Notifications
You must be signed in to change notification settings - Fork 24
/
mnist_train.py
128 lines (104 loc) · 4.28 KB
/
mnist_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Layer
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
import cPickle
# import parameters
from mnist_params import *
# encoder architecture
x = Input(shape=(original_dim,))
encoder_h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(encoder_h)
z_log_var = Dense(latent_dim)(encoder_h)
# sampling layer from latent distribution
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0., stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
#z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
z = Lambda(sampling)([z_mean, z_log_var])
# decoder / generator architecture
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
# Custom loss layer
class CustomVariationalLayer(Layer):
def __init__(self, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x, x_decoded_mean):
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean = inputs[1]
loss = self.vae_loss(x, x_decoded_mean)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output.
return x
y = CustomVariationalLayer()([x, x_decoded_mean])
# entire vae model
vae = Model(x, y)
vae.compile(optimizer='rmsprop', loss=None)
print vae.summary()
# load mnist dataset and preprocess
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
# training
history = vae.fit(x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test, None))
# encoder to generate latent variables from input
encoder = Model(x, z_mean)
# generator to generate image from latent variables
decoder_input = Input(shape=(latent_dim,))
_h_decoded = decoder_h(decoder_input)
_x_decoded_mean = decoder_mean(_h_decoded)
generator = Model(decoder_input, _x_decoded_mean)
# save all 3 models
vae.save('../models/ld_%d_id_%d_e_%d_vae.h5' % (latent_dim, intermediate_dim, epochs))
encoder.save('../models/ld_%d_id_%d_e_%d_encoder.h5' % (latent_dim, intermediate_dim, epochs))
generator.save('../models/ld_%d_id_%d_e_%d_generator.h5' % (latent_dim, intermediate_dim, epochs))
fname = '../models/ld_%d_id_%d_e_%d_history.pkl' % (latent_dim, intermediate_dim, epochs)
# save history
with open(fname, 'wb') as file_pi:
cPickle.dump(history.history, file_pi)
"""
# display a 2D plot of the digit classes in the latent space
x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
plt.figure(figsize=(6, 6))
plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test)
plt.colorbar()
plt.show()
# display a 2D manifold of the digits
n = 15 # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
#grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
#grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
grid_x = norm.ppf(np.linspace(-10.0, 10.0, n))
grid_y = norm.ppf(np.linspace(-10.0, 10.0, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]])
x_decoded = generator.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()
"""