-
Notifications
You must be signed in to change notification settings - Fork 500
/
Copy pathexport.py
47 lines (37 loc) · 1.4 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch, os, cv2
from model.model import parsingNet
from utils.common import merge_config
from utils.dist_utils import dist_print
import torch
import scipy.special, tqdm
import numpy as np
import torchvision.transforms as transforms
from data.dataset import LaneTestDataset
from data.constant import culane_row_anchor, tusimple_row_anchor
from PIL import Image
# Export to TorchScript that can be used for LibTorch
torch.backends.cudnn.benchmark = True
# From cuLANE, Change this line if you are using TuSimple
cls_num_per_lane = 18
griding_num = 200
backbone =18
net = parsingNet(pretrained = False,backbone='18', cls_dim = (griding_num+1,cls_num_per_lane,4),
use_aux=False)
# Change test_model where your model stored.
test_model = '/data/Models/UltraFastLaneDetection/culane_18.pth'
#state_dict = torch.load(test_model, map_location='cpu')['model'] # CPU
state_dict = torch.load(test_model, map_location='cuda')['model'] # CUDA
compatible_state_dict = {}
for k, v in state_dict.items():
if 'module.' in k:
compatible_state_dict[k[7:]] = v
else:
compatible_state_dict[k] = v
net.load_state_dict(compatible_state_dict, strict=False)
net.eval()
# Test Input Image
img = torch.zeros(1, 3, 288, 800) # image size(1,3,320,192) iDetection
y = net(img) # dry run
ts = torch.jit.trace(net, img)
#ts.save('UFLD.torchscript-cpu.pt') # CPU
ts.save('UFLD.torchscript-cuda.pt') # CUDA