forked from ruby/ruby
-
Notifications
You must be signed in to change notification settings - Fork 11
/
README.EXT
1469 lines (988 loc) · 42.7 KB
/
README.EXT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
.\" README.EXT - -*- Text -*- created at: Mon Aug 7 16:45:54 JST 1995
This document explains how to make extension libraries for Ruby.
1. Basic knowledge
In C, variables have types and data do not have types. In contrast,
Ruby variables do not have a static type, and data themselves have
types, so data will need to be converted between the languages.
Data in Ruby are represented by the C type `VALUE'. Each VALUE data
has its data-type.
To retrieve C data from a VALUE, you need to:
(1) Identify the VALUE's data type
(2) Convert the VALUE into C data
Converting to the wrong data type may cause serious problems.
1.1 Data-types
The Ruby interpreter has the following data types:
T_NIL nil
T_OBJECT ordinary object
T_CLASS class
T_MODULE module
T_FLOAT floating point number
T_STRING string
T_REGEXP regular expression
T_ARRAY array
T_HASH associative array
T_STRUCT (Ruby) structure
T_BIGNUM multi precision integer
T_FIXNUM Fixnum(31bit or 63bit integer)
T_COMPLEX complex number
T_RATIONAL rational number
T_FILE IO
T_TRUE true
T_FALSE false
T_DATA data
T_SYMBOL symbol
In addition, there are several other types used internally:
T_ICLASS
T_MATCH
T_UNDEF
T_NODE
T_ZOMBIE
Most of the types are represented by C structures.
1.2 Check Data Type of the VALUE
The macro TYPE() defined in ruby.h shows the data type of the VALUE.
TYPE() returns the constant number T_XXXX described above. To handle
data types, your code will look something like this:
switch (TYPE(obj)) {
case T_FIXNUM:
/* process Fixnum */
break;
case T_STRING:
/* process String */
break;
case T_ARRAY:
/* process Array */
break;
default:
/* raise exception */
rb_raise(rb_eTypeError, "not valid value");
break;
}
There is the data-type check function
void Check_Type(VALUE value, int type)
which raises an exception if the VALUE does not have the type
specified.
There are also faster check macros for fixnums and nil.
FIXNUM_P(obj)
NIL_P(obj)
1.3 Convert VALUE into C data
The data for type T_NIL, T_FALSE, T_TRUE are nil, false, true
respectively. They are singletons for the data type.
The equivalent C constants are: Qnil, Qfalse, Qtrue.
Note that Qfalse is false in C also (i.e. 0), but not Qnil.
The T_FIXNUM data is a 31bit or 63bit length fixed integer.
This size is depend on the size of long: if long is 32bit then
T_FIXNUM is 31bit, if long is 64bit then T_FIXNUM is 63bit.
T_FIXNUM can be converted to a C integer by using the
FIX2INT() macro or FIX2LONG(). Though you have to check that the
data is really FIXNUM before using them, they are faster. FIX2LONG()
never raises exceptions, but FIX2INT() raises RangeError if the
result is bigger or smaller than the size of int.
There are also NUM2INT() and NUM2LONG() which converts any Ruby
numbers into C integers. These macros includes a type check,
so an exception will be raised if the conversion failed. NUM2DBL()
can be used to retrieve the double float value in the same way.
You can use the macros
StringValue() and StringValuePtr() to get a char* from a VALUE.
StringValue(var) replaces var's value with the result of "var.to_str()".
StringValuePtr(var) does same replacement and returns char*
representation of var. These macros will skip the replacement if var
is a String. Notice that the macros take only the lvalue as their
argument, to change the value of var in place.
You can also use the macro named StringValueCStr(). This is just
like StringValuePtr(), but always add nul character at the end of
the result. If the result contains nul character, this macro causes
the ArgumentError exception.
StringValuePtr() doesn't guarantee the existence of a nul at the end
of the result, and the result may contain nul.
Other data types have corresponding C structures, e.g. struct RArray
for T_ARRAY etc. The VALUE of the type which has the corresponding
structure can be cast to retrieve the pointer to the struct. The
casting macro will be of the form RXXXX for each data type; for
instance, RARRAY(obj). See "ruby.h".
There are some accessing macros for structure members, for example
`RSTRING_LEN(str)' to get the size of the Ruby String object. The
allocated region can be accessed by `RSTRING_PTR(str)'. For arrays,
use `RARRAY_LEN(ary)' and `RARRAY_PTR(ary)' respectively.
Notice: Do not change the value of the structure directly, unless you
are responsible for the result. This ends up being the cause of
interesting bugs.
1.4 Convert C data into VALUE
To convert C data to Ruby values:
* FIXNUM
left shift 1 bit, and turn on LSB.
* Other pointer values
cast to VALUE.
You can determine whether a VALUE is pointer or not by checking its LSB.
Notice Ruby does not allow arbitrary pointer values to be a VALUE. They
should be pointers to the structures which Ruby knows about. The known
structures are defined in <ruby.h>.
To convert C numbers to Ruby values, use these macros.
INT2FIX() for integers within 31bits.
INT2NUM() for arbitrary sized integer.
INT2NUM() converts an integer into a Bignum if it is out of the FIXNUM
range, but is a bit slower.
1.5 Manipulating Ruby data
As I already mentioned, it is not recommended to modify an object's
internal structure. To manipulate objects, use the functions supplied
by the Ruby interpreter. Some (not all) of the useful functions are
listed below:
String functions
rb_str_new(const char *ptr, long len)
Creates a new Ruby string.
rb_str_new2(const char *ptr)
rb_str_new_cstr(const char *ptr)
Creates a new Ruby string from a C string. This is equivalent to
rb_str_new(ptr, strlen(ptr)).
rb_tainted_str_new(const char *ptr, long len)
Creates a new tainted Ruby string. Strings from external data
sources should be tainted.
rb_tainted_str_new2(const char *ptr)
rb_tainted_str_new_cstr(const char *ptr)
Creates a new tainted Ruby string from a C string.
rb_sprintf(const char *format, ...)
rb_vsprintf(const char *format, va_list ap)
Creates a new Ruby string with printf(3) format.
rb_str_cat(VALUE str, const char *ptr, long len)
Appends len bytes of data from ptr to the Ruby string.
rb_str_cat2(VALUE str, const char* ptr)
Appends C string ptr to Ruby string str. This function is
equivalent to rb_str_cat(str, ptr, strlen(ptr)).
rb_str_catf(VALUE str, const char* format, ...)
rb_str_vcatf(VALUE str, const char* format, va_list ap)
Appends C string format and successive arguments to Ruby string
str according to a printf-like format. These functions are
equivalent to rb_str_cat2(str, rb_sprintf(format, ...)) and
rb_str_cat2(str, rb_vsprintf(format, ap)), respectively.
rb_enc_str_new(const char *ptr, long len, rb_encoding *enc)
Creates a new Ruby string with the specified encoding.
rb_usascii_str_new(const char *ptr, long len)
rb_usascii_str_new_cstr(const char *ptr)
Creates a new Ruby string with encoding US-ASCII.
rb_str_resize(VALUE str, long len)
Resizes Ruby string to len bytes. If str is not modifiable, this
function raises an exception. The length of str must be set in
advance. If len is less than the old length the content beyond
len bytes is discarded, else if len is greater than the old length
the content beyond the old length bytes will not be preserved but
will be garbage. Note that RSTRING_PTR(str) may change by calling
this function.
rb_str_set_len(VALUE str, long len)
Sets the length of Ruby string. If str is not modifiable, this
function raises an exception. This function preserves the content
upto len bytes, regardless RSTRING_LEN(str). len must not exceed
the capacity of str.
Array functions
rb_ary_new()
Creates an array with no elements.
rb_ary_new2(long len)
Creates an array with no elements, allocating internal buffer
for len elements.
rb_ary_new3(long n, ...)
Creates an n-element array from the arguments.
rb_ary_new4(long n, VALUE *elts)
Creates an n-element array from a C array.
rb_ary_to_ary(VALUE obj)
Converts the object into an array.
Equivalent to Object#to_ary.
There are many functions to operate an array.
They may dump core if other types are given.
rb_ary_aref(argc, VALUE *argv, VALUE ary)
Equivaelent to Array#[].
rb_ary_entry(VALUE ary, long offset)
ary[offset]
rb_ary_subseq(VALUE ary, long beg, long len)
ary[beg, len]
rb_ary_push(VALUE ary, VALUE val)
rb_ary_pop(VALUE ary)
rb_ary_shift(VALUE ary)
rb_ary_unshift(VALUE ary, VALUE val)
2. Extending Ruby with C
2.1 Adding new features to Ruby
You can add new features (classes, methods, etc.) to the Ruby
interpreter. Ruby provides APIs for defining the following things:
* Classes, Modules
* Methods, Singleton Methods
* Constants
2.1.1 Class/module definition
To define a class or module, use the functions below:
VALUE rb_define_class(const char *name, VALUE super)
VALUE rb_define_module(const char *name)
These functions return the newly created class or module. You may
want to save this reference into a variable to use later.
To define nested classes or modules, use the functions below:
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
VALUE rb_define_module_under(VALUE outer, const char *name)
2.1.2 Method/singleton method definition
To define methods or singleton methods, use these functions:
void rb_define_method(VALUE klass, const char *name,
VALUE (*func)(), int argc)
void rb_define_singleton_method(VALUE object, const char *name,
VALUE (*func)(), int argc)
The `argc' represents the number of the arguments to the C function,
which must be less than 17. But I doubt you'll need that many.
If `argc' is negative, it specifies the calling sequence, not number of
the arguments.
If argc is -1, the function will be called as:
VALUE func(int argc, VALUE *argv, VALUE obj)
where argc is the actual number of arguments, argv is the C array of
the arguments, and obj is the receiver.
If argc is -2, the arguments are passed in a Ruby array. The function
will be called like:
VALUE func(VALUE obj, VALUE args)
where obj is the receiver, and args is the Ruby array containing
actual arguments.
There are some more functions to define methods. One takes an ID
as the name of method to be defined. See 2.2.2 for IDs.
void rb_define_method_id(VALUE klass, ID name,
VALUE (*func)(ANYARGS), int argc)
There are two functions to define private/protected methods:
void rb_define_private_method(VALUE klass, const char *name,
VALUE (*func)(), int argc)
void rb_define_protected_method(VALUE klass, const char *name,
VALUE (*func)(), int argc)
At last, rb_define_module_function defines a module functions,
which are private AND singleton methods of the module.
For example, sqrt is the module function defined in Math module.
It can be called in the following way:
Math.sqrt(4)
or
include Math
sqrt(4)
To define module functions, use:
void rb_define_module_function(VALUE module, const char *name,
VALUE (*func)(), int argc)
In addition, function-like methods, which are private methods defined
in the Kernel module, can be defined using:
void rb_define_global_function(const char *name, VALUE (*func)(), int argc)
To define an alias for the method,
void rb_define_alias(VALUE module, const char* new, const char* old);
To define a reader/writer for an attribute,
void rb_define_attr(VALUE klass, const char *name, int read, int write)
To define and undefine the `allocate' class method,
void rb_define_alloc_func(VALUE klass, VALUE (*func)(VALUE klass));
void rb_undef_alloc_func(VALUE klass);
func has to take the klass as the argument and return a newly
allocated instance. This instance should be as empty as possible,
without any expensive (including external) resources.
2.1.3 Constant definition
We have 2 functions to define constants:
void rb_define_const(VALUE klass, const char *name, VALUE val)
void rb_define_global_const(const char *name, VALUE val)
The former is to define a constant under specified class/module. The
latter is to define a global constant.
2.2 Use Ruby features from C
There are several ways to invoke Ruby's features from C code.
2.2.1 Evaluate Ruby Programs in a String
The easiest way to use Ruby's functionality from a C program is to
evaluate the string as Ruby program. This function will do the job:
VALUE rb_eval_string(const char *str)
Evaluation is done under the current context, thus current local variables
of the innermost method (which is defined by Ruby) can be accessed.
Note that the evaluation can raise an exception. There is a safer
function:
VALUE rb_eval_string_protect(const char *str, int *state)
It returns nil when an error occur. Moreover, *state is zero if str was
successfully evaluated, or nonzero otherwise.
2.2.2 ID or Symbol
You can invoke methods directly, without parsing the string. First I
need to explain about ID. ID is the integer number to represent
Ruby's identifiers such as variable names. The Ruby data type
corresponding to ID is Symbol. It can be accessed from Ruby in the
form:
:Identifier
or
:"any kind of string"
You can get the ID value from a string within C code by using
rb_intern(const char *name)
You can retrieve ID from Ruby object (Symbol or String) given as an
argument by using
rb_to_id(VALUE symbol)
You can convert C ID to Ruby Symbol by using
VALUE ID2SYM(ID id)
and to convert Ruby Symbol object to ID, use
ID SYM2ID(VALUE symbol)
2.2.3 Invoke Ruby method from C
To invoke methods directly, you can use the function below
VALUE rb_funcall(VALUE recv, ID mid, int argc, ...)
This function invokes a method on the recv, with the method name
specified by the symbol mid.
2.2.4 Accessing the variables and constants
You can access class variables and instance variables using access
functions. Also, global variables can be shared between both
environments. There's no way to access Ruby's local variables.
The functions to access/modify instance variables are below:
VALUE rb_ivar_get(VALUE obj, ID id)
VALUE rb_ivar_set(VALUE obj, ID id, VALUE val)
id must be the symbol, which can be retrieved by rb_intern().
To access the constants of the class/module:
VALUE rb_const_get(VALUE obj, ID id)
See 2.1.3 for defining new constant.
3. Information sharing between Ruby and C
3.1 Ruby constants that C can be accessed from C
As stated in section 1.3,
the following Ruby constants can be referred from C.
Qtrue
Qfalse
Boolean values. Qfalse is false in C also (i.e. 0).
Qnil
Ruby nil in C scope.
3.2 Global variables shared between C and Ruby
Information can be shared between the two environments using shared global
variables. To define them, you can use functions listed below:
void rb_define_variable(const char *name, VALUE *var)
This function defines the variable which is shared by both environments.
The value of the global variable pointed to by `var' can be accessed
through Ruby's global variable named `name'.
You can define read-only (from Ruby, of course) variables using the
function below.
void rb_define_readonly_variable(const char *name, VALUE *var)
You can defined hooked variables. The accessor functions (getter and
setter) are called on access to the hooked variables.
void rb_define_hooked_variable(const char *name, VALUE *var,
VALUE (*getter)(), void (*setter)())
If you need to supply either setter or getter, just supply 0 for the
hook you don't need. If both hooks are 0, rb_define_hooked_variable()
works just like rb_define_variable().
The prototypes of the getter and setter functions are as follows:
VALUE (*getter)(ID id, VALUE *var);
void (*setter)(VALUE val, ID id, VALUE *var);
Also you can define a Ruby global variable without a corresponding C
variable. The value of the variable will be set/get only by hooks.
void rb_define_virtual_variable(const char *name,
VALUE (*getter)(), void (*setter)())
The prototypes of the getter and setter functions are as follows:
VALUE (*getter)(ID id);
void (*setter)(VALUE val, ID id);
3.3 Encapsulate C data into a Ruby object
To wrap and objectify a C pointer as a Ruby object (so called
DATA), use Data_Wrap_Struct().
Data_Wrap_Struct(klass, mark, free, ptr)
Data_Wrap_Struct() returns a created DATA object. The klass argument
is the class for the DATA object. The mark argument is the function
to mark Ruby objects pointed by this data. The free argument is the
function to free the pointer allocation. If this is -1, the pointer
will be just freed. The functions mark and free will be called from
garbage collector.
These mark / free functions are invoked during GC execution. No
object allocations are allowed during it, so do not allocate ruby
objects inside them.
You can allocate and wrap the structure in one step.
Data_Make_Struct(klass, type, mark, free, sval)
This macro returns an allocated Data object, wrapping the pointer to
the structure, which is also allocated. This macro works like:
(sval = ALLOC(type), Data_Wrap_Struct(klass, mark, free, sval))
Arguments klass, mark, and free work like their counterparts in
Data_Wrap_Struct(). A pointer to the allocated structure will be
assigned to sval, which should be a pointer of the type specified.
To retrieve the C pointer from the Data object, use the macro
Data_Get_Struct().
Data_Get_Struct(obj, type, sval)
A pointer to the structure will be assigned to the variable sval.
See the example below for details.
4. Example - Creating dbm extension
OK, here's the example of making an extension library. This is the
extension to access DBMs. The full source is included in the ext/
directory in the Ruby's source tree.
(1) make the directory
% mkdir ext/dbm
Make a directory for the extension library under ext directory.
(2) design the library
You need to design the library features, before making it.
(3) write C code.
You need to write C code for your extension library. If your library
has only one source file, choosing ``LIBRARY.c'' as a file name is
preferred. On the other hand, in case your library has multiple source
files, avoid choosing ``LIBRARY.c'' for a file name. It may conflict
with an intermediate file ``LIBRARY.o'' on some platforms.
Note that some functions in mkmf library described below generate
a file ``conftest.c'' for checking with compilation. You shouldn't
choose ``conftest.c'' as a name of a source file.
Ruby will execute the initializing function named ``Init_LIBRARY'' in
the library. For example, ``Init_dbm()'' will be executed when loading
the library.
Here's the example of an initializing function.
--
void
Init_dbm(void)
{
/* define DBM class */
cDBM = rb_define_class("DBM", rb_cObject);
/* DBM includes Enumerate module */
rb_include_module(cDBM, rb_mEnumerable);
/* DBM has class method open(): arguments are received as C array */
rb_define_singleton_method(cDBM, "open", fdbm_s_open, -1);
/* DBM instance method close(): no args */
rb_define_method(cDBM, "close", fdbm_close, 0);
/* DBM instance method []: 1 argument */
rb_define_method(cDBM, "[]", fdbm_fetch, 1);
:
/* ID for a instance variable to store DBM data */
id_dbm = rb_intern("dbm");
}
--
The dbm extension wraps the dbm struct in the C environment using
Data_Make_Struct.
--
struct dbmdata {
int di_size;
DBM *di_dbm;
};
obj = Data_Make_Struct(klass, struct dbmdata, 0, free_dbm, dbmp);
--
This code wraps the dbmdata structure into a Ruby object. We avoid
wrapping DBM* directly, because we want to cache size information.
To retrieve the dbmdata structure from a Ruby object, we define the
following macro:
--
#define GetDBM(obj, dbmp) {\
Data_Get_Struct(obj, struct dbmdata, dbmp);\
if (dbmp->di_dbm == 0) closed_dbm();\
}
--
This sort of complicated macro does the retrieving and close checking for
the DBM.
There are three kinds of way to receive method arguments. First,
methods with a fixed number of arguments receive arguments like this:
--
static VALUE
fdbm_delete(VALUE obj, VALUE keystr)
{
:
}
--
The first argument of the C function is the self, the rest are the
arguments to the method.
Second, methods with an arbitrary number of arguments receive
arguments like this:
--
static VALUE
fdbm_s_open(int argc, VALUE *argv, VALUE klass)
{
:
if (rb_scan_args(argc, argv, "11", &file, &vmode) == 1) {
mode = 0666; /* default value */
}
:
}
--
The first argument is the number of method arguments, the second
argument is the C array of the method arguments, and the third
argument is the receiver of the method.
You can use the function rb_scan_args() to check and retrieve the
arguments. The third argument is a string that specifies how to
capture method arguments and assign them to the following VALUE
references.
The following is an example of a method that takes arguments by Ruby's
array:
--
static VALUE
thread_initialize(VALUE thread, VALUE args)
{
:
}
--
The first argument is the receiver, the second one is the Ruby array
which contains the arguments to the method.
** Notice
GC should know about global variables which refer to Ruby's objects, but
are not exported to the Ruby world. You need to protect them by
void rb_global_variable(VALUE *var)
(4) prepare extconf.rb
If the file named extconf.rb exists, it will be executed to generate
Makefile.
extconf.rb is the file for checking compilation conditions etc. You
need to put
require 'mkmf'
at the top of the file. You can use the functions below to check
various conditions.
have_library(lib, func): check whether library containing function exists.
have_func(func, header): check whether function exists
have_header(header): check whether header file exists
create_makefile(target): generate Makefile
The value of the variables below will affect the Makefile.
$CFLAGS: included in CFLAGS make variable (such as -O)
$CPPFLAGS: included in CPPFLAGS make variable (such as -I, -D)
$LDFLAGS: included in LDFLAGS make variable (such as -L)
$objs: list of object file names
Normally, the object files list is automatically generated by searching
source files, but you must define them explicitly if any sources will
be generated while building.
If a compilation condition is not fulfilled, you should not call
``create_makefile''. The Makefile will not be generated, compilation will
not be done.
(5) prepare depend (optional)
If the file named depend exists, Makefile will include that file to
check dependencies. You can make this file by invoking
% gcc -MM *.c > depend
It's harmless. Prepare it.
(6) generate Makefile
Try generating the Makefile by:
ruby extconf.rb
If the library should be installed under vendor_ruby directory
instead of site_ruby directory, use --vendor option as follows.
ruby extconf.rb --vendor
You don't need this step if you put the extension library under the ext
directory of the ruby source tree. In that case, compilation of the
interpreter will do this step for you.
(7) make
Type
make
to compile your extension. You don't need this step either if you have
put the extension library under the ext directory of the ruby source tree.
(8) debug
You may need to rb_debug the extension. Extensions can be linked
statically by adding the directory name in the ext/Setup file so that
you can inspect the extension with the debugger.
(9) done, now you have the extension library
You can do anything you want with your library. The author of Ruby
will not claim any restrictions on your code depending on the Ruby API.
Feel free to use, modify, distribute or sell your program.
Appendix A. Ruby source files overview
ruby language core
class.c : classes and modules
error.c : exception classes and exception mechanism
gc.c : memory management
load.c : library loading
object.c : objects
variable.c : variables and constants
ruby syntax parser
parse.y
-> parse.c : automatically generated
keywords : reserved keywords
-> lex.c : automatically generated
ruby evaluator (a.k.a. YARV)
compile.c
eval.c
eval_error.c
eval_jump.c
eval_safe.c
insns.def : definition of VM instructions
iseq.c : implementation of VM::ISeq
thread.c : thread management and context swiching
thread_win32.c : thread implementation
thread_pthread.c : ditto
vm.c
vm_dump.c
vm_eval.c
vm_exec.c
vm_insnhelper.c
vm_method.c
opt_insns_unif.def : instruction unification
opt_operand.def : definitions for optimization
-> insn*.inc : automatically generated
-> opt*.inc : automatically generated
-> vm.inc : automatically generated
regular expression engine (oniguruma)
regex.c
regcomp.c
regenc.c
regerror.c
regexec.c
regparse.c
regsyntax.c
utility functions
debug.c : debug symbols for C debuggger
dln.c : dynamic loading
st.c : general purpose hash table
strftime.c : formatting times
util.c : misc utilities
ruby interpreter implementation
dmyext.c
dmydln.c
dmyencoding.c
id.c
inits.c
main.c
ruby.c
version.c
gem_prelude.rb
prelude.rb
class library
array.c : Array
bignum.c : Bignum
compar.c : Comparable
complex.c : Complex
cont.c : Fiber, Continuation
dir.c : Dir
enum.c : Enumerable
enumerator.c : Enumerator
file.c : File
hash.c : Hash
io.c : IO
marshal.c : Marshal
math.c : Math
numeric.c : Numeric, Integer, Fixnum, Float
pack.c : Array#pack, String#unpack
proc.c : Binding, Proc
process.c : Process
random.c : random number
range.c : Range
rational.c : Rational
re.c : Regexp, MatchData
signal.c : Signal
sprintf.c :
string.c : String
struct.c : Struct
time.c : Time
defs/known_errors.def : Errno::* exception classes
-> known_errors.inc : automatically generated
multilingualization
encoding.c : Encoding
transcode.c : Encoding::Converter
enc/*.c : encoding classes
enc/trans/* : codepoint mapping tables
goruby interpreter implementation
goruby.c
golf_prelude.rb : goruby specific libraries.
-> golf_prelude.c : automatically generated
Appendix B. Ruby extension API reference
** Types
VALUE
The type for the Ruby object. Actual structures are defined in ruby.h,
such as struct RString, etc. To refer the values in structures, use
casting macros like RSTRING(obj).
** Variables and constants
Qnil
const: nil object
Qtrue
const: true object(default true value)
Qfalse
const: false object
** C pointer wrapping
Data_Wrap_Struct(VALUE klass, void (*mark)(), void (*free)(), void *sval)
Wrap a C pointer into a Ruby object. If object has references to other
Ruby objects, they should be marked by using the mark function during
the GC process. Otherwise, mark should be 0. When this object is no
longer referred by anywhere, the pointer will be discarded by free
function.
Data_Make_Struct(klass, type, mark, free, sval)
This macro allocates memory using malloc(), assigns it to the variable
sval, and returns the DATA encapsulating the pointer to memory region.
Data_Get_Struct(data, type, sval)
This macro retrieves the pointer value from DATA, and assigns it to
the variable sval.
** Checking data types
TYPE(value)
FIXNUM_P(value)
NIL_P(value)
void Check_Type(VALUE value, int type)
void Check_SafeStr(VALUE value)
** Data type conversion
FIX2INT(value), INT2FIX(i)
FIX2LONG(value), LONG2FIX(l)
NUM2INT(value), INT2NUM(i)
NUM2UINT(value), UINT2NUM(ui)
NUM2LONG(value), LONG2NUM(l)
NUM2ULONG(value), ULONG2NUM(ul)
NUM2LL(value), LL2NUM(ll)
NUM2ULL(value), ULL2NUM(ull)
NUM2OFFT(value), OFFT2NUM(off)
NUM2SIZET(value), SIZET2NUM(size)
NUM2SSIZET(value), SSIZET2NUM(ssize)
NUM2DBL(value)
rb_float_new(f)
StringValue(value)
StringValuePtr(value)
StringValueCStr(value)
rb_str_new2(s)