-
Notifications
You must be signed in to change notification settings - Fork 11
/
seg_wmma_256.cu
147 lines (118 loc) · 4.78 KB
/
seg_wmma_256.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include <benchmark/benchmark.h>
#include "init/init.hpp"
#include "reduction/args.hpp"
#include "utils/utils.hpp"
#include "kernel.cuh"
using namespace wmma_reduction;
template <int SEGMENTS_PER_WARP, int WARPS_PER_BLOCK>
void tryCUDA_WMMA_SEGMENTED_REDUCTION_256(benchmark::State &state) {
const size_t num_segments = state.range(0);
const size_t segment_size = state.range(1);
if (segment_size != WMMA_TILE_SIZE) {
state.SkipWithError("segment size must be WMMA_TILE_SIZE (256)");
}
const int BLOCK_DIM = WARPS_PER_BLOCK * WARP_SIZE;
const size_t num_elements = num_segments * segment_size;
const int segments_per_block = WARPS_PER_BLOCK * SEGMENTS_PER_WARP;
half *d_in_fp16 = nullptr;
half *d_out = nullptr;
try {
PRINT_IF_ERROR(cudaMalloc(&d_in_fp16, num_elements * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&d_out, num_segments * sizeof(half)));
cuda_memory_set(d_in_fp16, 0.001f, num_elements);
dim3 gridDim, blockDim;
blockDim.x = BLOCK_DIM;
gridDim.x = (num_segments + segments_per_block - 1) / segments_per_block;
if (gridDim.x >= CUDA_MAX_GRID_SIZE) {
state.SkipWithError(
fmt::format("gridDim.x={} is greater than CUDA_MAX_GRID_SIZE", gridDim.x)
.c_str());
return;
}
cudaEvent_t start, stop;
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
defer(cudaEventDestroy(start));
defer(cudaEventDestroy(stop));
for (auto _ : state) {
PRINT_IF_ERROR(cudaEventRecord(start));
compute_wmma_segmented_reduction_256<SEGMENTS_PER_WARP, WARPS_PER_BLOCK, BLOCK_DIM>
<<<gridDim, blockDim>>>(d_in_fp16, d_out, num_segments);
PRINT_IF_ERROR(cudaEventRecord(stop));
PRINT_IF_ERROR(cudaEventSynchronize(stop));
state.PauseTiming();
float msecTotal = 0.0f;
PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop));
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
state.counters.insert({{"num_segments", num_segments},
{"segment_size", segment_size},
{"num_elements", num_segments * segment_size},
{"segmented_per_warp", SEGMENTS_PER_WARP},
{"warps_per_block", WARPS_PER_BLOCK},
{"flops",
{state.iterations() * 1.0 * num_segments * segment_size,
benchmark::Counter::kAvgThreadsRate}}});
#if 0
half *h_out = new half[num_segments];
PRINT_IF_ERROR(cudaMemcpy(h_out, d_out, num_segments * sizeof(half),
cudaMemcpyDeviceToHost));
int errors = 0;
for (int j = 0; j < num_segments; j++) {
float correct_segment_sum = 0;
for (int i = 0; i < segment_size; i++) {
correct_segment_sum += h_in[j * segment_size + i];
}
if (fabs(half_to_float(h_out[j]) - correct_segment_sum) > 0.1) {
errors++;
printf("Expected %f, get h_out[%d] = %f\n", correct_segment_sum, j,
half_to_float(h_out[j]));
}
}
if (errors > 0) {
printf(
"CUDA_WMMA_SEGMENTED_REDUCTION_256 does not agree with SEQUENTIAL! %d errors!\n",
errors);
} else {
printf("Results verified: they agree.\n\n");
}
delete h_out;
#endif
cudaFree(d_in_fp16);
cudaFree(d_out);
} catch (...) {
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaDeviceReset();
const auto p = std::current_exception();
std::rethrow_exception(p);
}
}
template <int SEGMENTS_PER_WARP, int WARPS_PER_BLOCK>
void CUDA_WMMA_SEGMENTED_REDUCTION_256(benchmark::State &state) {
cudaDeviceReset();
try {
tryCUDA_WMMA_SEGMENTED_REDUCTION_256<SEGMENTS_PER_WARP, WARPS_PER_BLOCK>(state);
} catch (const std::exception &e) {
state.SkipWithError(e.what());
} catch (const std::string &e) {
state.SkipWithError(e.c_str());
} catch (...) {
state.SkipWithError("unknown exception");
}
}
#define RUN_CUDA_WMMA0(SEGMENTS_PER_WARP, WARPS_PER_BLOCK) \
BENCHMARK_TEMPLATE( \
CUDA_WMMA_SEGMENTED_REDUCTION_256, SEGMENTS_PER_WARP, WARPS_PER_BLOCK) \
->SEG_256_ARGS() \
->UseManualTime();
#define RUN_CUDA_WMMA(SEGMENTS_PER_WARP) \
RUN_CUDA_WMMA0(SEGMENTS_PER_WARP, 1); \
RUN_CUDA_WMMA0(SEGMENTS_PER_WARP, 2); \
RUN_CUDA_WMMA0(SEGMENTS_PER_WARP, 4); \
RUN_CUDA_WMMA0(SEGMENTS_PER_WARP, 8);
RUN_CUDA_WMMA(1);
RUN_CUDA_WMMA(2);
RUN_CUDA_WMMA(4);
RUN_CUDA_WMMA(8);