
simavr Manual

Jakob Gruber

jakob.gruber@gmail.com

October 5, 2020

Contents

1. Introduction 1

2. simavr Internals 2
2.1. simavr Example Walkthrough 2
2.2. The Main Loop . 6
2.3. Initialization . 9

2.3.1. avr_t Initialization . 9
2.3.2. Firmware . 9

2.4. Instruction Processing . 11
2.5. Interrupts . 12

2.5.1. Data Structures . 12
2.5.2. Raising and Servicing Interrupts 13

2.6. Cycle Timers . 14
2.7. GNU Debugger (GDB) Support 15
2.8. Interrupt Requests (IRQs) . 17
2.9. Input/Output (IO) . 19

2.9.1. Input/Output (IO) Register Callbacks 19
2.9.2. The avr_io_t Module 20

2.10. Value Change Dump (VCD) Files 23
2.11. Core Definitions . 24

A. Setup Guide 27
A.1. simavr . 27

A.1.1. Getting the source code 27
A.1.2. Software Dependencies 27
A.1.3. Compilation and Installation 28

i

1. Introduction

This manual is an excerpt of the bachelor’s thesis “qsimavr: Graphical Simu-
lation of an AVR Processor and Periphery” by Jakob Gruber. The full thesis
is available at https://github.com/schuay/bachelors_thesis.

Chapter 2 provides a brief overview of simavr internals, followed by a setup
guide in appendix A.

1

https://github.com/schuay/bachelors_thesis

2. simavr Internals

simavr is a small cross-platform Alf and Vegard’s Risc processor (AVR) simula-
tor written with simplicity, efficiency and hackability in mind1. It is supported
on Linux and OS X, but should run on any platform with avr-libc support.

In the following sections, we will take a tour through simavr internals2. We
will begin by examining short (but complete) demonstration application.

2.1. simavr Example Walkthrough

The following program is taken from the board i2ctest simavr example. Minor
modifications have been made to focus on the essential section. Error handling
is mostly omitted in favor of readability.

#include <stdlib.h>

#include <stdio.h>

#include <libgen.h>

#include <pthread.h>

#include "sim_avr.h"

#include "avr_twi.h"

#include "sim_elf.h"

#include "sim_gdb.h"

#include "sim_vcd_file.h"

#include "i2c_eeprom.h"

The actual simulation of the external Electrically Erasable Programmable
Read-Only Memory (EEPROM) component is located in i2c eeprom.h. We
will take a look at the implementation later on.

avr_t * avr = NULL;

avr_vcd_t vcd_file;

i2c_eeprom_t ee;

1 For some more technical principles, simavr also tries to avoid heap allocation at runtime
and often relies on C99’s struct set initialization.

2 Most, if not all of the code examined in this chapter is taken directly from simavr .

2

2.1 simavr Example Walkthrough 2 simavr Internals

avr is the main data structure. It encapsulates the entire state of the core
simulation, including register, Static Random-Access Memory (SRAM) and
flash contents, the Central Processing Unit (CPU) state, the current cycle
count, callbacks for various tasks, pending interrupts, and more.

vcd_file represents the file target for the Value Change Dump (VCD) mod-
ule. It is used to dump the level changes of desired pins (or Interrupt Re-
quests (IRQs) in general) into a file which can be subsequently viewed using
utilities such as gtkwave.

ee contains the internal state of the simulated external EEPROM.

int main(int argc , char *argv [])

{

elf_firmware_t f;

elf_read_firmware("atmega1280_i2ctest.axf", &f);

The firmware is loaded from the specified file. Note that exactly the same
file can be executed on the AVR hardware without changes. Microcontroller
(MCU) and frequency information have been embedded into the binary and
are therefore available in elf_firmware_t.

avr = avr_make_mcu_by_name(f.mmcu);

avr_init(avr);

avr_load_firmware(avr , &f);

The avr_t instance is then constructed from the core file of the specified
MCU and initialized. avr_load_firmware copies the firmware into program
memory.

i2c_eeprom_init(avr , &ee, 0xa0 , 0xfe , NULL , 1024);

i2c_eeprom_attach(avr , &ee, AVR_IOCTL_TWI_GETIRQ

(0));

AVR_IOCTL_TWI_GETIRQ is a macro to retrieve the internal IRQ of the Two-
Wire Interface (TWI) simulation. IRQs are the main method of communication
between simavr and external components and are also used liberally throughout
simavr internals. Similar macros exist for other important AVR parts such as
the Analog-Digital Converter (ADC), Input/Output (IO) ports, timers, etc.

avr ->gdb_port = 1234;

avr ->state = cpu_Stopped;

avr_gdb_init(avr);

This section sets up simavr ’s GNU Debugger (GDB) infrastructure to listen
on port 1234. The CPU is stopped to allow GDB to attach before execution
begins.

3

2.1 simavr Example Walkthrough 2 simavr Internals

avr_vcd_init(avr , "gtkwave_output.vcd", &vcd_file ,

100000 /* usec */);

avr_vcd_add_signal(

&vcd_file ,

avr_io_getirq(avr , AVR_IOCTL_TWI_GETIRQ (0),

TWI_IRQ_STATUS),

8 /* bits */,

"TWSR");

Next, a value change dump output is configured to track changes to the
TWI_IRQ_STATUS IRQ. The file may then be viewed using the gtkwave appli-
cation.

int state = cpu_Running;

while ((state != cpu_Done) && (state !=

cpu_Crashed))

state = avr_run(avr);

return 0;

}

Finally, we have reached the simple main loop. Each iteration executes one
instruction, handles any pending interrupts and cycle timers, and sleeps if
possible. As soon as execution completes or crashes, simulation stops and we
exit the program.

We will now examine the relevant parts of the i2c_eeprom implementation.
Details have been omitted and only communication with the avr_t instance
are shown.

static const char * _ee_irq_names [2] = {

[TWI_IRQ_MISO] = "8>eeprom.out",

[TWI_IRQ_MOSI] = "32<eeprom.in",

};

void

i2c_eeprom_init(

struct avr_t * avr ,

i2c_eeprom_t * p,

uint8_t addr ,

uint8_t mask ,

uint8_t * data ,

size_t size)

{

4

2.1 simavr Example Walkthrough 2 simavr Internals

/* [...] */

p->irq = avr_alloc_irq (&avr ->irq_pool , 0, 2,

_ee_irq_names);

avr_irq_register_notify(p->irq + TWI_IRQ_MOSI ,

i2c_eeprom_in_hook , p);

/* [...] */

}

First, the EEPROM allocates its own private IRQs. The EEPROM imple-
mentation does not know or care to which simavr IRQs they will be attached.
It then attaches a callback function (i2c_eeprom_in_hook) to the Master Out,
Slave In (MOSI) IRQ. This function will be called whenever a value is written
to the IRQ. The pointer to the EEPROM state p is passed to each of these
callback function calls.

void

i2c_eeprom_attach(

struct avr_t * avr ,

i2c_eeprom_t * p,

uint32_t i2c_irq_base)

{

avr_connect_irq(

p->irq + TWI_IRQ_MISO ,

avr_io_getirq(avr , i2c_irq_base ,

TWI_IRQ_MISO));

avr_connect_irq(

avr_io_getirq(avr , i2c_irq_base ,

TWI_IRQ_MOSI),

p->irq + TWI_IRQ_MOSI);

}

The private IRQs are then attached to simavr ’s internal IRQs. This is called
chaining - all messages raised are forwarded to all chained IRQs.

static void

i2c_eeprom_in_hook(

struct avr_irq_t * irq ,

uint32_t value ,

void * param)

{

i2c_eeprom_t * p = (i2c_eeprom_t *)param;

5

2.2 The Main Loop 2 simavr Internals

/* [...] */

avr_raise_irq(p->irq + TWI_IRQ_MISO ,

avr_twi_irq_msg(TWI_COND_ACK , p->selected ,

1));

/* [...] */

}

Finally, we’ve reached the IRQ callback function. It is responsible for sim-
ulating communications between simavr (acting as the TWI master) and the
EEPROM (as the TWI slave). The EEPROM state which was previously
passed to avr_irq_register_notify is contained in the param variable and
cast back to an i2c_eeprom_t pointer for further use.

Outgoing messages are sent by raising the internal IRQ. This message is
then forwarded to all chained IRQs.

2.2. The Main Loop

We will now take a closer look at the main loop implementation. Each call to
avr_run triggers the function stored in the run member of the avr_t structure
(avr->run3). The two standard implementations are avr_callback_run_raw

and avr_callback_run_gdb, located in sim avr.c. The essence of both function
is identical; since avr_callback_run_gdb contains additional logic for GDB
handling (network protocol, stepping), we will examine it further and point
out any differences to the the raw version. Several comments and irrelevant
code sections have been removed.

void avr_callback_run_gdb(avr_t * avr)

{

avr_gdb_processor(avr , avr ->state == cpu_Stopped);

if (avr ->state == cpu_Stopped)

return ;

int step = avr ->state == cpu_Step;

if (step)

avr ->state = cpu_Running;

3Whenever avr is mentioned in a code section, it is assumed to be the main avr_t struct.

6

2.2 The Main Loop 2 simavr Internals

This initial section is GDB specific. avr_gdb_processor is responsible for
handling GDB network communication. It also checks if execution has reached
a breakpoint or the end of a step and stops the CPU if it did.

If GDB has transmitted a step command, we need to save the state during
the main section of the loop (the CPU “runs” for one instruction) and restore
to the StepDone state at on completion.

In total, there are eight different states the CPU can enter:

enum {

cpu_Limbo = 0,

cpu_Stopped ,

cpu_Running ,

cpu_Sleeping ,

cpu_Step ,

cpu_StepDone ,

cpu_Done ,

cpu_Crashed ,

};

A CPU is Running during normal execution. Stopped occurs for example
when hitting a GDB breakpoint. Sleeping is entered whenever the SLEEP

instruction is processed. As mentioned, Step and StepDone are related to the
GDB stepping process. Execution can terminate either with Done or Crashed

on error. Upon initialization, the CPU is in the Limbo state.

avr_flashaddr_t new_pc = avr ->pc;

if (avr ->state == cpu_Running) {

new_pc = avr_run_one(avr);

}

We have now reached the actual execution of the current instruction. If
the CPU is currently running, avr_run_one decodes the instruction located
in flash memory (avr->flash) and triggers all necessary actions. This can in-
clude setting the CPU state (SLEEP), updating the status register Status Reg-
ister (SREG), writing or reading from memory locations, altering the Program
Counter (PC), etc . . .

Finally, the cycle counter (avr->cycle) is updated and the new program
counter is returned.

if (avr ->sreg[S_I] && !avr ->i_shadow)

avr ->interrupts.pending_wait ++;

avr ->i_shadow = avr ->sreg[S_I];

7

2.2 The Main Loop 2 simavr Internals

This section ensures that interrupts are not triggered immediately when en-
abling the interrupt flag in the status register, but with an (additional) delay
of one instruction.

avr_cycle_count_t sleep = avr_cycle_timer_process(

avr);

avr ->pc = new_pc;

Next, all due cycle timers are processed. Cycle timers are one of the most
important and heavily used mechanisms in simavr . A timer allows scheduling
execution of a callback function once a specific count of execution cycles have
passed, thus simulating events which occur after a specific amount of time has
passed. For example, the avr_timer module uses cycle timers to schedule timer
interrupts.

The returned estimated sleep time is set to the next pending event cycle (or
a hardcoded limit of 1000 cycles if none exist).

if (avr ->state == cpu_Sleeping) {

if (!avr ->sreg[S_I]) {

avr ->state = cpu_Done;

return;

}

avr ->sleep(avr , sleep);

avr ->cycle += 1 + sleep;

}

If the CPU is currently sleeping, the time spent is simulated using the call-
back stored in avr->sleep. In GDB mode, the time is used to listen for GDB
commands, while the raw version simply calls usleep.

It is worth noting that we have improved the timing behavior by accumu-
lating requested sleep cycles until a minimum of 200 usec has been reached.
usleep cannot handle lower sleep times accurately, which caused an unrealistic
execution slowdown.

A special case occurs when the CPU is sleeping while interrupts are turned
off. In this scenario, there is no way of ever waking up. Therefore, execution
is halted gracefully.

if (avr ->state == cpu_Running || avr ->state ==

cpu_Sleeping)

avr_service_interrupts(avr);

Finally, any immediately pending interrupts are handled. The highest prior-
ity interrupt (this depends solely on the interrupt vector address) is removed

8

2.3 Initialization 2 simavr Internals

from the pending queue, interrupts are disabled in the status register, and the
program counter is set to the interrupt vector.

If the CPU is sleeping, interrupts can be raised by cycle timers.

if (step)

avr ->state = cpu_StepDone;

}

Wrapping up, if the current loop iteration was a GDB step, the state is set
such that the next iteration will inform GDB and halt the CPU.

2.3. Initialization

2.3.1. avr_t Initialization

The avr_t struct requires some initialization before it is ready to be used by
the main loop as discussed in section 2.2.

avr_make_mcu_by_name fills in all details specific to an MCU. This includes
settings such as memory sizes, register locations, available components, the
default CPU frequency, etc . . .

The MCU definitions are located in the simavr/cores subdirectory of the
simavr source tree and are compiled conditionally depending on the the lo-
cal avr-libc support. A complete list of locally supported cores is printed by
running simavr without any arguments.

On successful completion, it returns a pointer to the avr_t struct.

If GDB support is desired, avr->gdb_port must be set, and avr_gdb_init

must be called to create the required data structures, set the avr->run and
avr->sleep callbacks, and listen on the specified port. It is also recommended
to initially stop the cpu (avr->state = cpu_Stopped) to delay program exe-
cution until it is started manually by GDB.

Further settings can now be applied manually (typical candidates are logging
and tracing levels).

2.3.2. Firmware

We now have a fully initialized avr_t struct and are ready to load code. This
is accomplished using avr_read_firmware, which uses elfutils to decode the
Executable and Linkable Format (ELF) file and read it into an elf_firmware_t

struct and avr_load_firmware to load its contents into the avr_t struct.

9

2.3 Initialization 2 simavr Internals

Besides loading the program code into avr->flash (and EEPROM contents
into avr->eeprom, if available), there are several useful extended features which
can be embedded directly into the ELF file.

The target MCU, frequency and voltages can be specified in the ELF
file by using the AVR_MCU and AVR_MCU_VOLTAGES macros provided by
avr_mcu_section.h:

#include "avr_mcu_section.h"

AVR_MCU (16000000 /* Hz */, "atmega1280");

AVR_MCU_VOLTAGES (3300 /* milliVolt */, 3300 /*

milliVolt */, 3300 /* milliVolt */);

VCD traces can be set up automatically. The following code will create an 8-
bit trace on the UDR0 register, and a trace masked to display only the UDRE0
bit of the UCSR0A register.

const struct avr_mmcu_vcd_trace_t _mytrace [] _MMCU_ =

{

{ AVR_MCU_VCD_SYMBOL("UDR0"), .what = (void*)&UDR0

, },

{ AVR_MCU_VCD_SYMBOL("UDRE0"), .mask = (1 << UDRE0

), .what = (void*)&UCSR0A , },

};

Several predefined commands can be sent from the firmware to simavr during
program execution. At the time of writing, these include starting and stopping
VCD traces, and putting UART0 into loopback mode. An otherwise unused
register must be specified to listen for command requests. During execution,
writing a command to this register will trigger the associated action within
simavr .

AVR_MCU_SIMAVR_COMMAND (& GPIOR0);

int main() {

/* [...] */

GPIOR0 = SIMAVR_CMD_VCD_START_TRACE;

/* [...] */

}

Likewise, a register can be specified for use as a debugging output. All bytes
written to this register will be output to the console.

AVR_MCU_SIMAVR_CONSOLE (& GPIOR0);

int main() {

10

2.4 Instruction Processing 2 simavr Internals

/* [...] */

const char *s = "Hello World\r";

for (const char *t = s; *t; t++)

GPIOR0 = *t;

/* [...] */

}

Usually, UART0 is used for this purpose. The simplest debug output can be
achieved by binding stdout to UART0 as described by the avr-libc documen-
tation, and then using printf and similar functions. This alternate console
output is provided in case using UART0 is not possible or desired.

2.4. Instruction Processing

We have now covered avr_t initialization, the main loop, and loading firmware
files. But how are instructions actually decoded and executed? Let’s take a
look at avr_run_one, located in sim core.

The opcode is reconstructed by retrieving the two bytes located at avr->

flash[avr->pc]. avr->pc points to the Least Significant Byte (LSB), and
avr->pc + 1 to the Most Significant Byte (MSB). Thus, the full opcode is
reconstructed with:

uint32_t opcode = (avr ->flash[avr ->pc + 1] << 8) | avr

->flash[avr ->pc];

As we have seen, avr->pc represents the byte address in flash memory.
Therefore, the next instruction is located at avr->pc + 2. This default new
program counter may still be altered in the course of processing in case of
jumps, branches, calls and larger opcodes such as STS.

Note also that the AVR flash addresses are usually represented as word ad-
dresses (avr->pc >> 1).

Similar to the program counter, the spent cycles are set to a default value of
1.

The instruction and its operands are then extracted from the opcode and
processed in a large switch statement. The instructions themselves can be
roughly categorized into arithmetic and logic instructions, branch instructions,
data transfer instructions, bit and bit-test instructions, and MCU control in-
structions.

Processing these will involve a number of typical tasks:

11

2.5 Interrupts 2 simavr Internals

• Status register modifications

The status register is stored in avr->sreg as a byte array. Most instruc-
tions alter the SREG in some way, and convenience functions such as
get_compare_carry are used to ease this task. Note that whenever the
firmware reads from SREG, it must be reconstructed from avr->sreg.

• Reading or writing memory

_avr_set_ram is used to write bytes to a specific address. Accessing an
SREG will trigger a reconstruction similar to what has been discussed
above. IO register accesses trigger any connected IO callbacks and raise
all associated IRQs. If a GDB watchpoint has been hit, the CPU is
stopped and a status report is sent to GDB. Data watchpoint support
has been added by the author.

• Modifying the program counter

Jumps, skips, calls, returns and similar instructions alter the program
counter. This is achieved by simply setting new_pc to an appropriate
value. Care must be taken to skip 32 bit instructions correctly.

• Altering MCU state

Instructions such as SLEEP and BREAK directly alter the state of the
simulation.

• Stack operations

Pushing and popping the stack involve altering the stack pointer in ad-
dition to the actual memory access.

Upon conclusion, avr->cycle is updated with the actual instruction dura-
tion, and the new program counter is returned.

2.5. Interrupts

An interrupt is an asynchronous signal which causes the the CPU to jump to
the associated Interrupt Service Routine (ISR) and continue execution there.
In the AVR architecture, the interrupt priority is ordered according to its place
in the interrupt vector table. When an interrupt is serviced, interrupts are
disabled globally.

2.5.1. Data Structures

Let’s take a look at how interrupts are represented in simavr :

12

2.5 Interrupts 2 simavr Internals

typedef struct avr_int_vector_t {

uint8_t vector;

avr_regbit_t enable;

avr_regbit_t raised;

avr_irq_t irq;

uint8_t pending : 1,

trace : 1,

raise_sticky : 1;

} avr_int_vector_t;

Each interrupt vector has an avr_int_vector_t. vector is actual vector
address, for example INT0_vect. enable and raised specify the IO register
index for, respectively, the interrupt enable flag and the interrupt raised bit
(again taking INT0 as an example, enable would point to the INT0 bit in EIMSK

, and raised to INTF0 in EIFR. irq is raised to 1 when the interrupt is triggered,
and to 0 when it is serviced. pending equals 1 whenever the interrupt is queued
for servicing, and trace is used for debugging purposes.

Usually, raised flags are cleared automatically upon interrupt servicing. How-
ever, this does not count for all interrupts(notably, TWINT). raise_sticky was
introduced by the author to handle this special case.

Interrupt vector definitions are stored in an avr_int_table_t, avr->

interrupts.

typedef struct avr_int_table_t {

avr_int_vector_t * vector [64];

uint8_t vector_count;

uint8_t pending_wait;

avr_int_vector_t * pending [64];

uint8_t pending_w ,

pending_r;

} avr_int_table_t , *avr_int_table_p;

pending_wait stores the number of cycles to wait before servicing pending
interrupts. This simulates the real interrupt delay that occurs between raising
and servicing, and whenever interrupts are enabled (and previously disabled).

pending along with pending_w and pending_r represents a ringbuffer of
pending interrupts. Note that servicing an interrupt removes the one with the
highest priority.

2.5.2. Raising and Servicing Interrupts

When an interrupt vector is raised, vector->pending is set, vector is added
to the pending First In, First Out (FIFO) of avr->interrupts, and a non-zero

13

2.6 Cycle Timers 2 simavr Internals

pending_wait time is ensured. If the CPU is currently sleeping, it is woken
up.

As we’ve already covered in section 2.2, servicing interrupts is only attempted
if the CPU is either running or sleeping. Additionally, interrupts must be
enabled globally in SREG, and pending_wait (which is decremented on each
avr_service_interrupts call) must have reached zero. The next pending
vector with highest priority is then removed from the pending ringbuffer and
serviced as follows:

if (! avr_regbit_get(avr , vector ->enable) || !vector ->

pending) {

vector ->pending = 0;

If the specific interrupt is masked or has been cleared, no action occurs.

} else {

_avr_push16(avr , avr ->pc >> 1);

avr ->sreg[S_I] = 0;

avr ->pc = vector ->vector * avr ->vector_size;

avr_clear_interrupt(avr , vector);

}

Otherwise, the current program counter is pushed onto the stack. This il-
lustrates the difference between byte addresses (as used in avr->pc) and word
addresses (as expected by the AVR processor). Interrupts are then disabled by
clearing the I bit of the status register, and the program counter is set to the
ISR vector. Finally, if raise_sticky is 0, the interrupt flag is cleared.

2.6. Cycle Timers

Cycle timers allow scheduling an event after a certain amount of cycles have
passed.

typedef avr_cycle_count_t (* avr_cycle_timer_t)(

struct avr_t * avr ,

avr_cycle_count_t when ,

void * param);

void

avr_cycle_timer_register(

struct avr_t * avr ,

avr_cycle_count_t when ,

avr_cycle_timer_t timer ,

14

2.7 GNU Debugger (GDB) Support 2 simavr Internals

void * param);

In avr_cycle_timer_register, when is the minimum count of cycles that
must pass until the timer callback is executed (param and when are passed
back to timer4).

Once dispatched, the cycle timer is removed from the list of pending timers.
If it returns a nonzero value, it is readded to occur at or after that cycle has
been reached. It is important to realize that it therefore differs from the when

argument of avr_cycle_timer_register, which expects a relative cycle count
(in contrast to the absolute cycle count returned by the callback itself)5.

The cycle timer system is used during the main loop to determine sleep
durations; if there are any pending timers, the sleep callback may sleep until
the next timer is scheduled. Otherwise, a default value of 1000 cycles is re-
turned. Besides achieving a runtime behavior similar to execution on a real
AVR processor, sleep is important for lowering simavr CPU usage whenever
possible.

IRQs and interrupts caused by external events (for example, a “touch” event
transmitted from the simulated touchscreen component) are and can not be
taken into account. This means that scheduled sleep times will always be
simulated to completion by avr->sleep, even if an external event causing CPU
wakeup is triggered immediately after going to sleep. Given a situation in which
the next scheduled timer is many cycles in the future and the CPU is currently
sleeping, the simulation will become extremely unresponsive to external events.

However, in real applications this situation is very unlikely, since manual
events (which cannot be scheduled through cycle timers) occur very rarely, and
most applications will have at least some cycle timers with a short period.

It is worth remembering though, that cycle timers are the preferred and most
accurate method of scheduling interrupts in simavr .

2.7. GNU Debugger (GDB) Support

A debugger is incredibly useful during program development. Simple program-
ming mistakes which can be discovered in minutes using GDB can sometimes
consume hours to find without it.

4 qsimavr exploits param to implement callbacks to class instances by passing the this

pointer as param.
5 Treating the return value of avr_cycle_timer_t as an absolute value and passing the

actually scheduled cycle allows for precise handling of recurring timers without drift. A
system based on relative cycle counts could not guarantee accuracy, because simavr does
not guarantee cycle timer execution exactly at the scheduled point in time.

15

2.7 GNU Debugger (GDB) Support 2 simavr Internals

We have covered how to enable GDB support in section 2.3.1, and when
GDB handler functions are called during the main loop in section 2.2. In the
following, we will explain further the methods simavr employs to communicate
with GDB and how breakpoints and data watchpoints are implemented.

simavr has a fully featured implementation of the GDB Remote Serial Proto-
col, which allows it to communicate with avr-gdb. A complete reference of the
protocol can be obtained from the GDB manual. Essentially, communication
boils down to packets of the format $packet-data#checksum. The packet data
itself consists of a command and its arguments. The syntax of all commands
supported by simavr is as follows:

’?’ Indicate the reason the target halted.

’G XX...’ Write general registers.

’g’ Read general registers.

’p n’ Read the value of register n.

’P n...=r...’ Write register n with value r.

’m addr,length’ Read length bytes of memory starting at address

addr.

’M addr,length:XX...’ Write length bytes of memory starting

address addr. XX... is the data.

’c’ Continue.

’s’ Step.

’r’ Reset the entire system.

’z type,addr,kind’ Delete break and watchpoints.

’Z type,addr,kind’ Insert break and watchpoints.

Many of these commands expect a reply value. This could be a simple as
sending "OK" to confirm successful execution, or it could contain the requested
data, such as the reply to the ’m’ command. A single reply can chain several
data fields. For example, whenever a watchpoint is hit, the reply contains the
signal the program received (0x05 represents the “trap” signal), the SREG,
Stack Pointer (SP), and PC values, the type of watchpoint which was hit
(either "awatch", "watch", or "rwatch"), and the watchpoint address.

The packets themselves are received and sent over an AF_INET socket listening
on the avr->gdb_port.

Both watchpoints and breakpoints are stored within an
avr_gdb_watchpoints_t struct in avr->gdb and are limited to 32 ac-
tive instances of each. Breakpoints are set at a particular location in flash
memory. Whenever the PC reaches that that point, execution is halted, a sta-
tus report containing a summary of current register values is sent, and control
is passed to GDB. This range check takes place in avr_gdb_processor, which

16

2.8 Interrupt Requests (IRQs) 2 simavr Internals

is called first during each iteration of the avr_callback_run_gdb function as
we have already discussed in section 2.2.

Watchpoints6 on the other hand are used to notify the user of accesses to
SRAM. GDB uses a fixed offset of 0x800000 to reference locations in SRAM;
this offset must be masked out when receiving GDB commands, and added
when sending watchpoint status reports. Three types of watchpoints exist:
Read watchpoints are triggered by data reads, write watchpoints by writes,
and access watchpoints by both. Handling of these is integrated into the
avr_core_watch_write and avr_core_watch_read functions. Whenever ap-
plicable watchpoints exist for a data access, execution is halted, and a status
report is sent to GDB.

Finally, since program crashes often occur unexpectedly, simavr helpfully
provides GDB passive mode, which opens a GDB listening socket whenever
an exception occurs if the GDB port is specified. It is therefore always a good
idea to initialize avr->gdb_port, even if you have no intention of using simavr ’s
GDB features!

2.8. Interrupt Requests (IRQs)

The Interrupt Request (IRQ)7 subsystem provides the message passing mech-
anism in simavr . Let’s begin by examining the main IRQ data structures:

typedef struct avr_irq_t {

struct avr_irq_pool_t * pool;

const char * name;

uint32_t irq;

uint32_t value;

uint8_t flags;

struct avr_irq_hook_t * hook;

} avr_irq_t;

An IRQ consists of an associated IRQ pool, a name (for debugging purposes),
an Identifier (ID), its current value, flags, and a list of callback functions.
The ID (irq) is when a callback function connected to several IRQs needs to
determine which specific IRQ has been raised.

The semantics of value are not fixed and are specific to each IRQ; for exam-
ple, ADC_IRQ_ADC0 treats value as milliVolts, while IOPORT_IRQ_PIN0 expects

6Watchpoint support has been added by the author.
7 Despite the name, IRQs have nothing in particular to do with interrupts; the interrupt

system uses IRQs, and IRQs may trigger interrupts, but they are not strictly linked to
each other. Many IRQ usages will not involve interrupts at all.

17

2.8 Interrupt Requests (IRQs) 2 simavr Internals

it to equal either 1 (high) or 0 (low). flags is a bitmask of several options8.
IRQ_FLAG_NOT flips the polarity of the signal (raising an IRQ with value 1
results in a value of 0 and vice versa). Setting IRQ_FLAG_FILTERED instructs
simavr to ignore IRQ raises with unchanged values.

hook contains a linked list of chained IRQs and avr_irq_notify_t callbacks.

typedef void (* avr_irq_notify_t)(

struct avr_irq_t * irq ,

uint32_t value ,

void * param);

void

avr_irq_register_notify(

avr_irq_t * irq ,

avr_irq_notify_t notify ,

void * param);

Callbacks are executed whenever an IRQ is raised (and is not filtered).
Chained IRQs are raised whenever the IRQ they are connected to is raised.

As briefly mentioned in section 2.1, module implementations usually struc-
ture communication with the simavr core by allocating their own private IRQs,
which are then connected to the target simavr IRQs. Callbacks are registered
on private IRQs; likewise, only private IRQs are raised. This ensures maximum
flexibility since IRQ connections are defined in one single location. Relevant
functions are:

avr_irq_t *

avr_alloc_irq(

avr_irq_pool_t * pool ,

uint32_t base ,

uint32_t count ,

const char ** names /* optional */);

void

avr_irq_register_notify(

avr_irq_t * irq ,

avr_irq_notify_t notify ,

void * param);

void

8 IRQ_FLAG_ALLOC and IRQ_FLAG_INIT are of internal interest only and not mentioned
further.

18

2.9 Input/Output (IO) 2 simavr Internals

avr_connect_irq(

avr_irq_t * src ,

avr_irq_t * dst);

void

avr_raise_irq(

avr_irq_t * irq ,

uint32_t value);

2.9. Input/Output (IO)

The IO module consists of two separate, yet complementary parts: on the one
hand, a systematic way of defining actions that take place when IO registers are
accessed, and on the other the avr_io_t infrastructure, which provides unified
access to module IRQs, reset and deallocation callbacks, and a Input/Output
Control (IOCTL) system.

2.9.1. Input/Output (IO) Register Callbacks

We will examine the IO register callback system first. Whenever the simavr
core reads or writes an IO register during instruction processing (see section
2.4), it first checks if a callback exists for that address. Assuming it does, a
write access will result in a call to the write callback instead of setting avr->

data directly:

static inline void _avr_set_r(avr_t * avr , uint8_t r,

uint8_t v)

{

/* [...] */

uint8_t io = AVR_DATA_TO_IO(r);

if (avr ->io[io].w.c)

avr ->io[io].w.c(avr , r, v, avr ->io[io].w.param

);

else

avr ->data[r] = v;

if (avr ->io[io].irq) {

avr_raise_irq(avr ->io[io].irq +

AVR_IOMEM_IRQ_ALL , v);

for (int i = 0; i < 8; i++)

avr_raise_irq(avr ->io[io].irq + i, (v >> i

) & 1);

19

2.9 Input/Output (IO) 2 simavr Internals

}

/* [...] */

}

This snippet contains several interesting bits; first of all, we are reminded that
IO addresses are offset by 0x20 (these are added by AVR_DATA_TO_IO). Next
up, we see that write callbacks need to set the avr->data value themselves if
necessary. Notice also that a custom parameter is passed into the callback, like
most other callback systems in simavr . Finally, the associated IOMEM IRQs are
raised; both bitwise and the byte IRQ AVR_IOMEM_IRQ_ALL.

Read accesses are very similar, except that (somewhat counter-intuitively),
the value returned by the callback is automatically written to avr->data.

Access callbacks plus associated IOMEM IRQs are stored in the avr->io array.
MAX_IOs is currently set to 279, enough to handle all used IO registers on AVRs
like the atmega1280, which go up to an address of 0x1369.

struct {

struct avr_irq_t * irq;

struct {

void * param;

avr_io_read_t c;

} r;

struct {

void * param;

avr_io_write_t c;

} w;

} io[MAX_IOs];

Callbacks are registered using the function duo of avr_register_io_write
and avr_register_io_read. IRQs are created on-demand whenever the

avr_iomem_getirq function is called.

The included simavr modules (implemented in files beginning with the avr_

prefix) provide many practical examples of IO callback usage; for example, the
avr_timer module uses IO callbacks to start the timer when a clock source is
enabled through the timer registers.

2.9.2. The avr_io_t Module

The avr_io_t infrastructure provides additional functionality to modules, in-
cluding reset and deallocation callbacks, central IRQ handling, and a IOCTL
function. The full struct reference is provided here for reference:

9 279 = 0x136 − 0x20 + 0x01

20

2.9 Input/Output (IO) 2 simavr Internals

typedef struct avr_io_t {

struct avr_io_t * next;

avr_t * avr;

const char * kind;

const char ** irq_names;

uint32_t irq_ioctl_get;

int irq_count;

struct avr_irq_t * irq;

void (*reset)(struct avr_io_t *io);

int (* ioctl)(struct avr_io_t *io, uint32_t ctl ,

void *io_param);

void (* dealloc)(struct avr_io_t *io);

} avr_io_t;

Initialization in the avr_ioport Module

For a typical way of initializing an avr_io_t struct, let’s look at the
avr_ioport module.

static const char * irq_names[IOPORT_IRQ_COUNT] = {

[IOPORT_IRQ_PIN0] = "=pin0",

[IOPORT_IRQ_PIN1] = "=pin1",

/* [...] */

[IOPORT_IRQ_PIN7] = "=pin7",

[IOPORT_IRQ_PIN_ALL] = "=all",

[IOPORT_IRQ_DIRECTION_ALL] = ">ddr",

};

static avr_io_t _io = {

.kind = "port",

.reset = avr_ioport_reset ,

.ioctl = avr_ioport_ioctl ,

.irq_names = irq_names ,

};

Once again, struct set initialization is used to partially configure a module.
Passed in are the reset and IOCTL handlers, a module name (for debugging
purposes), and a list of IRQ names. The deallocation handler is not used by
the avr_ioport module.

21

2.9 Input/Output (IO) 2 simavr Internals

void avr_ioport_init(avr_t * avr , avr_ioport_t * p)

{

p->io = _io;

avr_register_io(avr , &p->io);

avr_register_vector(avr , &p->pcint);

avr_io_setirqs (&p->io, AVR_IOCTL_IOPORT_GETIRQ(p->

name), IOPORT_IRQ_COUNT , NULL);

avr_register_io_write(avr , p->r_port ,

avr_ioport_write , p);

avr_register_io_read(avr , p->r_pin ,

avr_ioport_read , p);

avr_register_io_write(avr , p->r_pin ,

avr_ioport_pin_write , p);

avr_register_io_write(avr , p->r_ddr ,

avr_ioport_ddr_write , p);

}

Moving on to avr_ioport_init; the private, partially initialized avr_io_t

is copied to the avr_ioport_t. io is the first member of the module struct to
facilitate easy simple conversion between avr_io_t and avr_ioport_t pointers
(this is used in the IOCTL function).

avr_register_io adds the IO module to the linked list stored in the main
avr_t instance, which is iterated at AVR reset and deallocation events; it is
also used by the IOCTL and to retrieve IRQs.

avr_io_setirqs is then called to create the IOPORT IRQs. The ID gener-
ated by AVR_IOCTL_IOPORT_GETIRQ is stored for subsequent use during IRQ
retrieval.

The remaining functions called by avr_ioport_init have been left in to
convey a complete picture of avr_ioport initialization. avr_register_vector
registers the external interrupt vector, and the avr_register_io_* functions
create access handlers on IO registers as discussed in section 2.9.1.

Implementation Overview

IOCTLs provide a way to trigger arbitrary functionality10 in modules. When-
ever a IOCTL is triggered by calling avr_ioctl, the IOCTL handler of all

10 For example, the avr_ioport module uses the IOCTL system to allow extracting the
state of a particular port’s PORT, PIN, and DDR registers; avr_eeprom allows getting and
setting memory locations.

22

2.10 Value Change Dump (VCD) Files 2 simavr Internals

modules registered in the avr->io_port linked list is called in sequence until
one responds to that particular command by returning a value other than -1.
This is then returned to the caller.

The reset handler is called whenever avr_reset is called, allowing the module
to do react appropriately. In qsimavr , a major reason for registering as a
avr_io_t module was to recreate cycle timers and restart VCD traces.

If a module allocates resources, these can be freed during the deallocation
handler.

Finally, avr_io_getirq lets a module “publish” its IRQs for use by other
modules or applications built on top of simavr . This function is used whenever
a qsimavr component is connected to simavr modules:

avr_connect_irq(avr_io_getirq(avr ,

AVR_IOCTL_IOPORT_GETIRQ(PORT), PIN), irq +

IRQ_TEMP_DQ);

2.10. Value Change Dump (VCD) Files

VCD is a simple file format for dumps of signal changes over time. Each file
consists of a header containing general information (most importantly, the used
timescale which is always 1ns in simavr dumps), variable definitions (containing
the name and size of each tracked signal), and finally the value changes them-
selves. The following example contains the header section, variable definitions,
and initial value changes of a three signal VCD file generated by simavr :

$timescale 1ns $end

$scope module logic $end

$var wire 1 ! <temp.data $end

$var wire 1 " >temp.data $end

$var wire 1 # <temp.ddr $end

$upscope $end

$enddefinitions $end

$dumpvars

0!

0"

0#

$end

#36072750

0!

#36072875

23

2.11 Core Definitions 2 simavr Internals

1"

1!

1#

[...]

VCD files can be displayed and analyzed graphically by wave viewers. On
Linux, gtkwave is well suited for this task (see Figure 2.1).

Figure 2.1.: GTKWave

The simavr VCD implementation uses a combination of cycle timers
and IRQs to track signal11 changes. After initializing an avr_vcd_t with
avr_vcd_init, tracked signals are configured by calling avr_vcd_add_signal

. This connects an internal IRQ12 to the tracked signal, which has
_avr_vcd_notify registered as a callback function. The latter is called when-
ever a tracked signal changes, and registers the updated value, the current
cycle, and the source IRQ in its log.

Accumulated log data is flushed periodically by a cycle timer, the period
of which is specified on avr_vcd_t initialization. When a large amount
is produced on the tracked signals, it may be necessary to decrease the used
period to avoid log overflows.

Tracking can be started and stopped at any time during program execution
by calling avr_vcd_start and avr_vcd_stop. As explained in section 2.3.2,
this can even be triggered from the firmware itself.

2.11. Core Definitions

The actual core definitions used by simavr are located in the simavr/cores

subdirectory of the source tree. These definitions rely on avr-libc headers to
specify the internal structure of an MCU needed for simulation.

The core and all internal components (such as timers, Universal Asyn-
chronous Receiver/Transmitters (UARTs), IO ports, ADCs, Serial Periph-
eral Interfaces (SPIs), etc . . .) are defined in an internal struct using struct

11 In simavr , each tracked signal is actually an IRQ.
12 Limited to 32 connections.

24

2.11 Core Definitions 2 simavr Internals

set initialization for a terse representation. The avr_t initialization of the
atmega1280 therefore clocks in at only a couple of lines:

.core = {

.mmcu = "atmega1280",

DEFAULT_CORE (4),

.init = m1280_init ,

.reset = m1280_reset ,

.rampz = RAMPZ ,

},

DEFAULT_CORE13 initializes basic parameters included in avr-libc headers for
every MCU such as RAMEND, FLASHEND, etc . . .). The init and reset members
point to callbacks which are used to (obviously) initialize and reset the MCU.

Internal components are connected to the avr_t core in the init function:

void m1280_init(struct avr_t * avr)

{

struct mcu_t * mcu = (struct mcu_t *)avr;

avr_eeprom_init(avr , &mcu ->eeprom);

avr_flash_init(avr , &mcu ->selfprog);

avr_extint_init(avr , &mcu ->extint);

avr_watchdog_init(avr , &mcu ->watchdog);

avr_ioport_init(avr , &mcu ->porta);

/* [...] */

}

A short excerpt of atmega1280’s TIMER0 initialization should throw some
light on how components are configured. Notice how all register and bit loca-
tions rely on avr-libc definitions:

.timer0 = {

.name = ’0’,

.wgm = { AVR_IO_REGBIT(TCCR0A , WGM00),

AVR_IO_REGBIT(TCCR0A , WGM01), AVR_IO_REGBIT(

TCCR0B , WGM02) },

.wgm_op = {

[0] = AVR_TIMER_WGM_NORMAL8 (),

13 The argument specifies the vector size.

25

2.11 Core Definitions 2 simavr Internals

[2] = AVR_TIMER_WGM_CTC (),

[3] = AVR_TIMER_WGM_FASTPWM8 (),

[7] = AVR_TIMER_WGM_OCPWM (),

},

.cs = { AVR_IO_REGBIT(TCCR0B , CS00), AVR_IO_REGBIT

(TCCR0B , CS01), AVR_IO_REGBIT(TCCR0B , CS02) },

.cs_div = { 0, 0, 3 /* 8 */, 6 /* 64 */, 8 /* 256

/, 10 / 1024 */ },

.r_tcnt = TCNT0 ,

.overflow = {

.enable = AVR_IO_REGBIT(TIMSK0 , TOIE0),

.raised = AVR_IO_REGBIT(TIFR0 , TOV0),

.vector = TIMER0_OVF_vect ,

},

/* ... */

}

Adding a new MCU definition is a simple matter of creating a new sim_*.c

file in simavr/cores and defining all included components with the help of
avr-libc and a datasheet.

This concludes our tour of the simavr core modules. You should now have
a good idea of how simavr internals work together and complement each other
to create an AVR simulation which is accurate, reliable, yet simple, efficient,
and easy to extend. For an example of all of these concepts in practice, take a
look at the modules included with simavr . A good example is the avr_eeprom

module, which uses a combination of interrupts, an avr_io_t module, and IO
access callbacks to achieve the desired functionality.

26

A. Setup Guide

This section provides instructions on how to retrieve, compile and install simavr
on the GNU/Linux operating system.

A.1. simavr

A.1.1. Getting the source code

The official home of simavr is https://github.com/buserror/simavr. Stable
releases are published as git repository tags (direct downloads are available at
https://github.com/buserror/simavr/tags). To clone a local copy of the
repository, run

git clone git://github.com/buserror/simavr.git

A.1.2. Software Dependencies

elfutils is the only hard dependency at run-time. The name of this package
may differ from distro to distro. For example, in Ubuntu the required package
is called libelf-dev.

At compile-time, simavr additionally requires avr-libc to complete its built-
in AVR core definitions. It is assumed that further standard utilities (git, gcc
or clang, make, etc . . .) are already present.

simavr has been tested with the following software versions:

• Arch Linux x86 64 and i686

• elfutils 0.154

• avr-libc 1.8.0

• gcc 4.7.1

• make 3.82

Furthermore, the board usb example depends on libusb vhci and vhci hcd.
For further details, see examples/board usb/README. Note however that these
are not required for a fully working simavr build.

27

https://github.com/buserror/simavr
https://github.com/buserror/simavr/tags

A.1 simavr A Setup Guide

A.1.3. Compilation and Installation

simavr ’s build system relies on standard makefiles. The simplest compilation
boils down to the usual

make

make install

As usual, there are several variables to allow configuration of the build pro-
cedure. The most important ones are described in the following section:

• AVR ROOT

The path to the system’s avr-libc installation.

While the default value should be correct for many systems, it may
need to be set manually if the message ’WARNING . . . did not compile,
check your avr-gcc toolchain’ appears during the build. For example, if
iomxx0 1.h is located at /usr/avr/include/avr/iomxx0 1.h, AVR ROOT
must be set to /usr/avr.

• CFLAGS

The standard compiler flags variable.

It may be useful to modify CFLAGS for easier debugging (in which case
optimizations should be disabled and debugging information enabled: -
O0 -g). Additionally adding -DCONFIG SIMAVR TRACE=1 enables
extra verbose output and extended execution tracing.

These variables may be set either directly in Makefile.common, or alter-
natively can be passed to the make invocation (make AVR ROOT=/usr/avr
DESTDIR=/usr install).

Installation is managed through the usual

make install

The DESTDIR variable can be used in association with the PREFIX variable
to create a simavr package. DESTDIR=/dest/dir PREFIX=/usr installs to
/dest/dir but keeps the package configured to the standard prefix (/usr).

For development, we built and installed simavr with the following procedure:

make clean

make AVR_ROOT=/usr/avr CFLAGS="-O0 -Wall -Wextra -g -fPIC \

-std=gnu99 -Wno-sign-compare -Wno-unused-parameter"

make DESTDIR="/usr" install

28

	Introduction
	simavr Internals
	simavr Example Walkthrough
	The Main Loop
	Initialization
	|avrt| Initialization
	Firmware

	Instruction Processing
	Interrupts
	Data Structures
	Raising and Servicing Interrupts

	Cycle Timers
	GNU Debugger (GDB) Support
	Interrupt Requests (IRQs)
	Input/Output (IO)
	Input/Output (IO) Register Callbacks
	The |avriot| Module

	Value Change Dump (VCD) Files
	Core Definitions

	Setup Guide
	simavr
	Getting the source code
	Software Dependencies
	Compilation and Installation

