- Introduction
- Function Overview
- OpenAI Tool JSON Definition
- Function Implementation
- Testing and Error Handling
- Conclusion
This guide provides a detailed walkthrough for implementing a single function that utilizes a variety of argument types as defined in the OpenAI Tool JSON schema. The function will demonstrate handling of different data types including strings, integers, booleans, arrays, and objects.
- Function Name:
comprehensive_function
- Description: Demonstrates the use of various argument types in a single function.
{
"name": "comprehensive_function",
"description": "Demonstrates the use of various argument types in a single function.",
"parameters": {
"type": "object",
"properties": {
"string_arg": {
"type": "string",
"description": "A simple string argument."
},
"integer_arg": {
"type": "integer",
"description": "An integer argument."
},
"boolean_arg": {
"type": "boolean",
"description": "A boolean argument."
},
"array_arg": {
"type": "array",
"items": {
"type": "string"
},
"description": "An array of strings."
},
"object_arg": {
"type": "object",
"properties": {
"nested_string": {
"type": "string",
"description": "A nested string within an object."
},
"nested_integer": {
"type": "integer",
"description": "A nested integer within an object."
}
},
"required": ["nested_string", "nested_integer"],
"description": "An object containing nested properties."
}
},
"required": ["string_arg", "integer_arg", "boolean_arg", "array_arg", "object_arg"]
}
}
def comprehensive_function(string_arg, integer_arg, boolean_arg, array_arg, object_arg):
# Process string argument
print(f"String Argument: {string_arg}")
# Process integer argument
print(f"Integer Argument: {integer_arg}")
# Process boolean argument
print(f"Boolean Argument: {boolean_arg}")
# Process array argument
print("Array Argument:")
for item in array_arg:
print(f" - {item}")
# Process object argument
print("Object Argument:")
print(f"Nested String: {object_arg['nested_string']}")
print(f"Nested Integer: {object_arg['nested_integer']}")
# Return a summary
return {
"response": "Function executed successfully with all argument types."
}
- Unit Tests: Create tests for each argument type to ensure correct handling.
- Integration Tests: Test the function in a simulated environment to verify end-to-end functionality.
- Type Validation: Ensure each argument is of the expected type.
- Missing Arguments: Handle cases where required arguments are not provided.
- Invalid Data: Provide meaningful error messages for invalid data inputs.
This guide demonstrates the implementation of a function that handles a comprehensive set of argument types as defined in the OpenAI Tool JSON schema. By following this guide, developers can ensure robust handling of diverse data types in their applications.