-
Notifications
You must be signed in to change notification settings - Fork 6
/
day_2.Rmd
666 lines (522 loc) · 19.8 KB
/
day_2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
---
title: |
| Randomized experiments: Potential outcome schedules
| \& estimation of causal effects
bibliography:
- 'BIB/MasterBibliography.bib'
---
# Recap
### Randomization and potential outcomes schedules
- Yesterday we introduced two important concepts:
1. Random assignment
2. Fisherian hypothesis testing, using distributions derived from random assignment as a basis the test
- Today we will introduce potential outcomes schedules, the missing ingredient to use Fisherian hypothesis testing to learn about causal effects
# Potential Outcomes
### Neyman-Rubin potential outcome framework
- Thus far, we have entertained counter-to-fact assignments of
treatment
- Responses have been fixed at their observed values
- @neyman1923 and @rubin1974 also posited counter-to-fact outcomes
- I.e., \mh{potential outcomes}
- E.g., perfect discrimination in "Lady Tasting Tea" example
\vfill
\begin{table}[H]
\scriptsize
\begin{tabular}{l|l}
\toprule
$\mathbf{z}_1$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
\toprule
$\mathbf{z}_2$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
\toprule
$\mathbf{z}_3$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
$\cdots $
\hfill
\begin{tabular}{l|l}
\toprule
$\mathbf{z}_{68}$ & $\mathbf{y}$ \\ \midrule
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1
\end{tabular}
\hfill
\begin{tabular}{l|l}
\toprule
$\mathbf{z}_{69}$ & $\mathbf{y}$ \\ \midrule
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}
\hfill
\begin{tabular}{l|l}
\toprule
$\mathbf{z}_{70}$ & $\mathbf{y}$ \\ \midrule
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}
\end{table} \vfill
### Potential outcomes
![image](images/null_dists_discrim_plot.pdf){width="100%"}
### Causality with Potential Outcomes
- Definition: \bh{Treatment}
- $Z_i$: Indicator of treatment assignment for *unit* $i$, where
$i = 1, \ldots, N$ $$Z_i = \left\{
\begin{array}{ll}
1 & \mbox{if unit $i$ receives treatment}\\
0 & \mbox{otherwise}
\end{array}
\right.$$
- Definition: \bh{Potential Outcomes} (assuming "SUTVA")
- $y_i(1)$ or $y_i(0)$: Fixed value of the outcome for unit $i$ if it
were to receive treatment or control
- E.g., $y_i(1)$: voter turnout of person $i$ if person $i$ were to
receive mail encouraging turnout
- E.g., $y_i(0)$: voter turnout of person $i$ if person $i$ were *not*
to receive mail encouraging turnout
### Defining Causal Effects + Observed Outcomes
- \mh{Additive} causal effect of the treatment on the outcome for unit $i$:
$$\begin{aligned}
\tau_i & = & y_i(1) - y_i(0)
\end{aligned}$$
(Again, assumes "SUTVA").
- Other functions of of individual potential outcomes possible, e.g.,
$\dfrac{y_i(1)}{y_i(0)}$
- \mh{Fundamental Problem of Causal Inference} (Holland 1986):
::: center
We can never observe both $y_i(1)$ and $y_i(0)$ for the same $i$\
:::
- We can observe only one of the two potential outcomes:
$$Y_i = Z_i y_i(1) + (1 - Z_i)y_i(0)$$
- Therefore, $\tau_{i}$ is unobserved for every unit
### Average treatment effect: An example
- Definition: \bh{Average Treatment Effect (ATE)}
$$\begin{aligned}
\tau & = & \frac{1}{N}\sum_{i = 1}^N \left(y_i(1) - y_i(0) \right)
\end{aligned}$$
- Example: \bh{``Village heads'' study} (Gerber and Green 2012, Chapter 2):
- ::: center
--------- ------------------ ------------------ -------------
Budget share (%)
Village $\bm{y}(\bm{0})$ $\bm{y}(\bm{1})$ $\bm{\tau}$
1 10 15 5
2 15 15 0
3 20 30 10
4 20 15 -5
5 10 20 10
6 15 15 0
7 15 30 15
Average 15 20 5
--------- ------------------ ------------------ -------------
:::
### Potential outcome schedules
- A \mh{potential outcome schedule} [@freedman2009] is vector-valued function
$\bm{y}: \left\{0, 1\right\}^N \mapsto \mathop{\mathrm{\mathbb{R}}}^N$
- Potential outcomes for all $N$ units written as $\bm{y}(\bm{z})$
- Potential outcome for individual unit $i$ written as
$y_i(\bm{z})$
- Intuitively, a listing of how each unit would respond to any
$\bm{z} \in \left\{0, 1\right\}^N$
- We often consider potential outcome schedules that satisfy Stable
Unit Treatment Value Assumption (SUTVA)
[@rubin1980b; @rubin1986]
- SUTVA means that
1. Units in experiment respond to only treatment condition to which
each unit is individually assigned (no "interference"; @cox1958a)
2. Treatment condition is actually the same treatment for all units
assigned to treatment and control condition is the same for all
units assigned to control
### Potential outcome schedules
- SUTVA implies
- One fixed value of the outcome for unit $i$ if it is assigned to
treatment $(z_i = 1)$ and another fixed value if unit $i$ is
assigned to control $(z_i = 0)$
- $\rightarrow$ Each unit has at most two potential outcomes
- $\rightarrow$ write potential outcomes for unit $i$ as $y_i(1)$
or $y_i(0)$.
- $\rightarrow$ summarize $2^n$ p.o. schedules w/ one $n \times 2$ table, as done above for the Village heads study
### SUTVA
\fontsize{8pt}{8pt}\selectfont
- Both no discrimination and perfect discrimination satisfy SUTVA
- Consider, e.g., unit $i = 4$ under either potential outcome schedule
\begin{center}\textbf{No discrimination}\end{center}
\begin{table}[H]
\begin{tabular}{l|l}
$\mathbf{z}_1$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
\mh{1} & \mh{1} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_2$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
\mh{0} & \mh{1} \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_3$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
\mh{0} & \mh{1} \\
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
$\cdots $
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_{68}$ & $\mathbf{y}$ \\ \midrule
0 & 1 \\
0 & 1 \\
0 & 1 \\
\mh{1} & \mh{1} \\
1 & 0 \\
0 & 0 \\
1 & 0 \\
1 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_{69}$ & $\mathbf{y}$ \\ \midrule
0 & 1 \\
0 & 1 \\
0 & 1 \\
\mh{1} & \mh{1} \\
0 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_{70}$ & $\mathbf{y}$ \\ \midrule
0 & 1 \\
0 & 1 \\
0 & 1 \\
\mh{0} & \mh{1} \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{tabular}
\end{table} \vfill
\vspace{1em}
\begin{center}\textbf{Perfect discrimination}\end{center}
\begin{table}[H]
\begin{tabular}{l|l}
$\mathbf{z}_1$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
\mh{1} & \mh{1} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_2$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
\mh{0} & \mh{0} \\
1 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_3$ & $\mathbf{y}$ \\ \midrule
1 & 1 \\
1 & 1 \\
1 & 1 \\
\mh{0} & \mh{0} \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 0
\end{tabular}
\hfill
$\cdots$
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_{68}$ & $\mathbf{y}$ \\ \midrule
0 & 0 \\
0 & 0 \\
0 & 0 \\
\mh{1} & \mh{1} \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_{69}$ & $\mathbf{y}$ \\ \midrule
0 & 0 \\
0 & 0 \\
0 & 0 \\
\mh{1} & \mh{1} \\
0 & 0 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}
\hfill
\begin{tabular}{l|l}
$\mathbf{z}_{70}$ & $\mathbf{y}$ \\ \midrule
0 & 0 \\
0 & 0 \\
0 & 0 \\
\mh{0} & \mh{0} \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}
\end{table}
# Tests of general sharp null hypotheses
### A simple model of effects for the Acorn GOTV experiment
- Consider ACORN GOTV experiment by @arceneaux2005
- Fisher's sharp null hypothesis of no effect states that individual
effect is $p = 0$ percentage points for all precincts
GOTV? vote03(%) $\bm{y}(\bm{0})$ $\bm{y}(\bm{1})$ $\bm{\tau}$
---------- ------- ----------- ------------------ ------------------ -------------
1 0 38 38 38 0
$\vdots$
13 0 19 19 19 0
14 0 34 34 34 0
15 1 49 49 49 0
16 1 38 38 38 0
$\vdots$
28 1 29 29 29 0
### Distribution of test-stat under sharp null of no effect
- To get a p-value, we could exactly enumerate all assignments,
$\Omega$
- But with $\binom{28}{14} = 40,116,600$, this is too computationally
intensive
- Instead, we randomly sample from set of $\binom{28}{14}$ possible
assignments
- Then calculate test-stat under each assignment holding outcomes
fixed
- E.g., Diff-in-Means
$t\left(\bm{z}, \bm{y}\right) = n_T^{-1} \bm{z}^{\top}\bm{y} - n_C^{-1} \left(1 - \bm{z}\right)^{\top} \bm{y}$
- \mh{Note this test-stat is not same as one in Fisher's "Lady
Tasting Tea", $\bm{z}^{\top}\bm{y}$}
- Finally, calculate p-value
$$\Pr\left(t\left(\bm{Z},\bm{y}\right) \geq t^{\text{obs}}\right) = \sum \limits_{\bm{z}\in \Omega} \mathbbm{1}\left\{t\left(\bm{z}, \bm{y}\right) \geq t^{\text{obs}}\right\} \Pr\left(\bm{Z} = \bm{z}\right),$$
### Distribution of test-stat under sharp null of no effect
![Distribution of the Difference-in-Means test-stat under the sharp null
of no effect](images/null_dist_no_effect_plot.pdf){width="90%"}
### Hypothesis tests in adjusted outcomes
- How do we test hypotheses other than no effect for all units?
- @rosenbaum2002a [@rosenbaum2010; @rosenbaum2017]: Write units' true
adjusted outcomes as $\tilde{y}_i = y_i - \tau_i z_i$ for
$i = 1, \ldots , N$, where $\tau_i \coloneqq y_i(1) - y_i(0)$
- $\tilde{y}_i$ is fixed for every unit regardless if assigned to
treatment or control
- I.e.,
$\bm{\tilde{y}} = \begin{bmatrix} \tilde{y}_1 & \tilde{y}_2 & \ldots & \tilde{y}_N \end{bmatrix}^{\top}$
satisfies sharp null of no effects
- So to conduct a test about $\bm{\tau}$, we can compare
$t(\bm{z}, \bm{\tilde{y}}_{h})$ to randomization distribution of
sharp null of no effects on adjusted outcomes,
$t(\bm{Z}, \bm{\tilde{y}}_{h})$, where
$\tilde{y}_{hi} = y_i - z_i \tau_{hi}$ for all $i = 1, \ldots , N$
- \mh{Intuition}: Can we make outcomes appear as if there is no effect by removing
hypothetical effect from treated units? If so, then this is evidence
in favor of that hypothetical effect
### Hypothesis tests in adjusted outcomes
- $H_0$: GOTV campaign increases voter turnout by $p$ percentage
points per precinct
\begin{center}
\begin{tabular}{r|rr|rrrr}
\hline
& GOTV? & vote03(\%)& $\bm{\tilde{y}}_h$ & $\bm{y}(\bm{0})$ & $\bm{y}(\bm{1})$ & $\bm{\tau}$\\
\hline
1 & 0 & 38 & 38 & 38 & ? & ?\\
$\vdots$& & & & & & \\
13 & 0 & 19 & 19 & 19& ? & ?\\
14 & 0 & 34 & 34 & 34& ? & ?\\
15 & 1 & 49 & 49 - p & ?& 49 & ?\\
16 & 1 & 38 & 38 - p & ?& 38 & ?\\
$\vdots$& & & & & & \\
28 & 1 & 29 & 29 - p & ?& 29 & ? \\
\hline
\end{tabular}
\end{center}
### Hypothesis tests in adjusted outcomes
- For example, $H_0$: $p = 2.5$
\begin{center}
\begin{tabular}{r|rr|rrrr}
\hline
& GOTV? & vote03(\%)& $\bm{\tilde{y}}_h$ & $\bm{y}(\bm{0})$ & $\bm{y}(\bm{1})$ & $\bm{\tau}$\\
\hline
1 & 0 & 38 & 38 & 38 & ? & ?\\
$\vdots$& & & & & & \\
13 & 0 & 19 & 19 & 19& ? & ?\\
14 & 0 & 34 & 34 & 34& ? & ?\\
15 & 1 & 49 & 46.5 & ?& 49 & ?\\
16 & 1 & 38 & 35.5 & ?& 38 & ?\\
$\vdots$& & & & & & \\
28 & 1 & 29 & 26.5 & ?& 29 & ? \\
\hline
\end{tabular}
\end{center}
- The observed test statistic calculated on adjusted outcomes is
$t(\bm{z}, \bm{\tilde{y}}_h) \approx 1.13$
- How does it compare to $t\left(\bm{Z}, \bm{\tilde{y}}_h\right)$?
### Hypothesis tests in adjusted outcomes
![image](images/null_unif_plot.pdf){width="90%"}
### Confidence sets
- To get a confidence set we do what we just did with $p = 2.5$ over
an entire grid of values of $p$
- A $1-\alpha$ confidence set for $p$ $=$ {$p$: $H_{p}$ not rejected
at level $\alpha$}
- We test over all values of $p$ and retain those we fail to reject
with adjusted outcomes
- Two sided confidence set for ACORN example:
$\left\{-0.4, 7.5\right\}$
- We fail to reject sharp null of no effect
# Difference-in-Means estimator (time permitting)
### Review: setup for randomized experiments
- Units: $i = 1, \ldots, N$
- Treatment: $Z_i = 0$ or $Z_i = 1$ is randomly assigned
- Potential outcomes: $y_i(0)$ and $y_i(1)$
- Observed outcome: $Y_i = Z_i y_i(1) + (1 - Z_i) y_i(0)$
- Treatment Assignment Mechanism
- \(1\) \mh{Bernoulli (simple) randomization}: Each unit is independently assigned to treatment with
probability $p$
- \(2\) \mh{Complete randomization}: Exactly $n_1$ units are treated and $N - n_1 = n_0$ units
are untreated
- \(3\) In practice, (1) and (2) are equivalent when we fix $n_1$ by
conditioning on its observed value
- Under complete or simple (conditioning on observed $n_1$)
randomization
$$\mathop{\mathrm{\rm{E}}}\left[Z_i\right] = \dfrac{n_1}{N}$$
## Bias of Difference-in-Means in simply randomized designs
### Unbiasedness of Difference-in-Means: Proof
- \mh{Difference-in-Means estimator} $$\begin{aligned}
\hat{\tau}\left(\bm{Z}, \bm{Y}\right) & = n_1^{-1} \bm{Z}^{\top} \bm{Y} - n_0^{-1} \left(\bm{1} - \bm{Z}\right)^{\top}\bm{Y} \\
& = \frac{1}{n_1} \sum_{i=1}^N Z_i Y_i - \frac{1}{n_0} \sum_{i = 1}^N (1 - Z_i) Y_i
\end{aligned}$$
- \mh{Unbiased} for the ATE under complete randomization \pause
- {\footnotesize $$\begin{aligned}
\hspace{-0.4in} \mathop{\mathrm{\rm{E}}}\left[\hat{\tau}\left(\bm{Z}, \bm{Y}\right)\right] & = & \mathop{\mathrm{\rm{E}}}\left[\frac{1}{n_1} \sum_{i=1}^N Z_i Y_i - \frac{1}{n_0} \sum_{i = 1}^N (1 - Z_i) Y_i\right]\\
\hspace{-0.4in} & = & \frac{1}{n_1} \sum_{i=1}^N \mathop{\mathrm{\rm{E}}}\left[Z_i Y_i\right]
- \frac{1}{n_0} \sum_{i=1}^N \mathop{\mathrm{\rm{E}}}\left[(1 - Z_i) Y_i\right] \hspace{0.1in}
\mbox{($\because$ Linearity of $\mathop{\mathrm{\rm{E}}}$)}\\
\hspace{-0.4in} & = & \frac{1}{n_1} \sum_{i=1}^N \mathop{\mathrm{\rm{E}}}\left[Z_i y_i(1)\right]
- \frac{1}{n_0} \sum_{i=1}^N \mathop{\mathrm{\rm{E}}}\left[(1 - Z_i) y_i(0) \right] \hspace{0.1in}
\mbox{($\because$ Definition of POs)}\\
\hspace{-0.4in} & = & \frac{1}{n_1} \sum_{i=1}^N y_i(1) \mathop{\mathrm{\rm{E}}}\left[Z_i\right]
- \frac{1}{n_0} \sum_{i=1}^N y_i(0) \mathop{\mathrm{\rm{E}}}\left[1 - Z_i\right] \hspace{0.1in}
\mbox{($\because$ POs are fixed)}\\
\hspace{-0.4in} & = & \frac{1}{n_1} \sum_{i=1}^N y_i(1) \left(\frac{n_1}{N}\right)
- \frac{1}{n_0} \sum_{i=1}^N y_i(0) \left(\frac{n_0}{N}\right) \hspace{0.1in}
\mbox{($\because$ complete randomization)}\\
\hspace{-0.4in} & = & \frac{1}{N} \sum_{i=1}^N y_i(1)
- \frac{1}{N} \sum_{i=1}^N y_i(0)
\end{aligned}$$
}
### Unbiasedness of Difference-in-Means: Example
$\bm{z}_1$ $\bm{y}(\bm{0})$ $\bm{y}(\bm{1})$ $\bm{y}_1$
------------ ------------------ ------------------ ------------
1 ? 15 15
1 ? 15 15
0 20 ? 20
0 20 ? 20
0 10 ? 10
0 15 ? 15
0 15 ? 15
$\cdots$
$\bm{z}_{21}$ $\bm{y}(\bm{0})$ $\bm{y}(\bm{1})$ $\bm{y}_{21}$
--------------- ------------------ ------------------ ---------------
0 10 ? 10
0 15 ? 15
0 20 ? 20
0 20 ? 20
0 10 ? 10
1 ? 15 15
1 ? 30 30
- Random vectors $\bm{Z}$ and $\bm{Y}$ can take on any
$\left(\bm{z}_1, \bm{y}_1\right), \cdots , \left(\bm{z}_{21}, \bm{y}_{21}\right)$
- Applying Diff-in-Means estimator to all $21$ possible realizations
of data
- $\implies$ $21$ possible outputs of estimator:
$$\hat{\tau}\left(\bm{z}_1, \bm{y}_1\right) = -1, \, \hat{\tau}\left(\bm{z}_2, \bm{y}_2\right) = 7.5, \, \cdots \, , \, \hat{\tau}\left(\bm{z}_{21}, \bm{y}_{21}\right) = 7.5$$
- Expected value of Diff-in-Means estimator:
$$\mathop{\mathrm{\rm{E}}}\left[\hat{\tau}\left(\bm{Z}, \bm{Y}\right)\right] = \hat{\tau}\left(\bm{z}_1, \bm{y}_1\right)\Pr\left(\bm{Z} = \bm{z}_1\right) + \ldots + \hat{\tau}\left(\bm{z}_{21}, \bm{y}_{21}\right)\Pr\left(\bm{Z} = \bm{z}_{21}\right)$$
- So, in "village heads" example
$$\mathop{\mathrm{\rm{E}}}\left[\hat{\tau}\left(\bm{Z}, \bm{Y}\right)\right] = (-1) \left(1/21\right) + (7.5) \left(1/21\right) + \ldots + (7.5) \left(1/21\right) = 5$$
### Unbiasedness of Difference-in-Means: Example
- Diff-in-Means estimator under complete random assignment
- ![Difference-in-Means estimator in "Village heads"
example](images/cra_est_dist_plot.pdf){width="\\linewidth"}
### Next steps
- What happens when the size of our experiment grows large?
- Consistency of Difference-in-Means estimator for ATE
- Asymptotic validity of hypothesis tests about ATE