-
Notifications
You must be signed in to change notification settings - Fork 6
/
day18.tex
345 lines (279 loc) · 11.6 KB
/
day18.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
\input{slidesonly}
% % For handout
%\input{handout}
%For handout + mynotes
%\input{handout+mynotes}
\input{beamer-preamble-bbh-all}
\input{defs-all}
\input{courseedition}
\title[Day 18]{Day 18: $H^{3}$ sensitivity analysis; various}
% \author, date moved to beamer-preamble-*-all.tex
% copied from CSCAR svn repo, `dissdefs.tex`
\usepackage{xspace}
\newcommand{\satm}{\mbox{\textsc{sat-m}}\xspace}
\newcommand{\satv}{\mbox{\textsc{sat-v}}\xspace}
\newcommand{\upm}{\mbox{\textsc{urm}}\xspace}
\newcommand{\asian}{\mbox{\textsc{asian}}\xspace}
\newcommand{\presatm}{\mbox{\textsc{pre-m}}\xspace}
\newcommand{\premath}{\mbox{\textsc{pre-m}}\xspace}
\newcommand{\presatv}{\mbox{\textsc{pre-v}}\xspace}
\newcommand{\preverb}{\mbox{\textsc{pre-v}}\xspace}
\newcommand{\parentsinc}{\mbox{\textsc{incm}}\xspace}
\newcommand{\gpa}{\mbox{\textsc{gpa}}\xspace}
\newcommand{\dadsed}{\mbox{\textsc{dadsed}}\xspace}
\newcommand{\momsed}{\mbox{\textsc{momsed}}\xspace}
\newcommand{\avgeng}{\mbox{\textsc{e-gpa}}\xspace}
\newcommand{\avgmath}{\mbox{\textsc{m-gpa}}\xspace}
\newcommand{\avgnatsci}{\mbox{\textsc{ns-gpa}}\xspace}
\newcommand{\avgssci}{\mbox{\textsc{ss-gpa}}\xspace}
\newcommand{\coach}{\mbox{\textsc{coach}}\xspace}
\newcommand{\dadcoll}{\mbox{\textsc{dadcoll}}\xspace}
\newcommand{\aavg}{\mbox{\textsc{a-avg}}\xspace}
\begin{document}
\input{announcement-of-the-day}
\section{$H^{3}$ sensitivity analysis; PS $\leftrightarrow$ OV ``interaction''}
\begin{frame}
\frametitle{Background: omitted variables}
Almost all findings from observational studies could in principle be
explained by an unmeasured variable. But how strong a confounder
would be needed? Rosenbaum (1987,\ldots) quantifies confounding in
terms of propensity scores.
\begin{center}
\igrphx[height=.6\textheight]{rb2010p77}
\end{center}
An analytically easier course uses regression to quantify confounding.
\end{frame}
\begin{frame}
\frametitle{Causal inference via covariance adjustment}
When we fit a model
$$
Y = a + Zb + \mathbf{X} c + e,\,\,\, e \sim \mathcal{N}(0, \sigma^{2}),
$$
the estimated $b$ merits interpretation as the causal effect of treatment $Z$ if\\
\begin{enumerate}
\item $(Y_{t}, Y_{c}) \perp Z | X$
\item The linear relationship well-enough describes the finite population of interest.
\end{enumerate}
The first of these assumptions is usually untestable, and more central.
\end{frame}
\begin{frame}
\frametitle{Sensitivity analysis for the linear model}
\framesubtitle{An omitted variable}
We fit
$$
Y = a + Zb + \mathbf{X} c + e,\,\,\, e \sim \mathcal{N}(0, \sigma^{2}),
$$
but would have liked to have fit
$$
Y = \alpha + Z\beta + \mathbf{X} \gamma + W\zeta + e,\,\,\, e \sim \mathcal{N}(0, \sigma^{2}).
$$
\begin{enumerate}
\item<2-> How different are $b$ and $\beta$?
\item<3-> How different are the confidence intervals for $b$ and $\beta$?
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Sensitivity analysis for the linear model}
\framesubtitle{``speculation parameters''}
We can quantify the relationship of $b$ to $\beta$, and of $\mathrm{se}(b)$ to
$\mathrm{se}(\beta)$, in terms of 2 ``speculation parameters'':
\begin{enumerate}
\item $t_{w}$, the $t$-statistic associated with $W$'s coefficient in the (OLS) regression of $Z$ on $W$ and $\mathbf{X}$;
\item $R^2_{y\cdot z\mathbf{x} w}$, the
coefficient of multiple determination of the regression of $Y$ on $Z$,
$\mathbf{X}$, and $W$.
\end{enumerate}
More specifically, we can bound the upper and lower limits of conventional confidence intervals in terms of $t_{w}$ alone, or (often more sharply) in terms of $t_{w}$ and $R^2_{y\cdot z\mathbf{x} w}$.
\end{frame}
\begin{frame}
\frametitle{$W$-insensitive confidence bounds as a function of $t_{w}$}
\begin{prop}[Hosman, Hansen \& Holland, 2010]
Let $T>0$. If $|t_{w}| \leq T$ then
$$
\hat{\beta}\pm q\widehat{\mathrm{se}} (\hat{\beta}) \subseteq
\hat{b} \pm \left( \sqrt{T^2 + q^{2} \cdot \frac{T^2 +
n-r(\mathbf{X})-2}{n-r(\mathbf{X})-3} } \right) \widehat{\mathrm{se}}(\hat{b}).
$$
\end{prop}
\end{frame}
\frame<1-4>[label=probsstudy]
{
\frametitle{Application: An observational study of coaching for the SAT}
Powers \& Rock (1999) sampled one in 200 SAT-I registrants in 1995-96.
\begin{itemize}
\item<2-| alert@+> The ``treatment'' is being coached for the SAT. This
information comes from survey responses.
\item<3-| alert@+> Outcomes, \textit{i.e.} SAT scores, come from the College Board's
administrative records.
\item<4-| alert@+> Many students took the SAT or PSAT before being coached; so
there are pretest scores too. \pause
\item<5-| alert@+> Covariate is high-dimensional (and a little bit messy).
\end{itemize}
}
\begin{frame} \frametitle{Sensitivity of estimates of \satm benefit of coaching }
\framesubtitle{\satm \textasciitilde \coach + \presatm + \presatv + \asian + \upm + \dadcoll + \aavg + \avgmath}
\newlength{\pholderlngth}
\settowidth{\pholderlngth}{[aims for postgrad. deg.]}
\begin{center}
\begin{tabular}{|l|l|r|} \hline
\parbox{\pholderlngth}{Excluding from predictors in regression of \coach on
\asian,\ldots, \avgmath the
variable} &
\parbox{2cm}{dullens prediction of \coach by $t=$}
& \parbox{2.5cm}{Then if $W$ is s.t. $t_w \leq t$,
$\beta \pm 2\widehat{\mathrm{se}}(\hat{\beta}) \subseteq$} \\
\hline
\asian & 8.1 & [-2,44] \\
\upm & 3.2 & [11,32] \\
\dadcoll & 7.9 & [-1,44]\\
\presatm & 2.4 & [13,30 ]\\
\presatv & -2.4& [13,30 ] \\
\aavg & 0.5 & [16,27] \\
\avgmath & -2.0& [13,29 ] \\\hline
\end{tabular}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Confidence limits for math effect under several omitted variable scenarios }
\begin{columns}
\column{.5\linewidth}%
{
\igrphx[width=\linewidth]{SensAnal-mathSA}
\bigskip
{\footnotesize Propensity score stratification + fixed effects regression}
}
\column{.5\linewidth}%
{
\only<2->{
\igrphx[width=\linewidth]{climits_ovsa1}
\bigskip
{\footnotesize Covariate adjustment via OLS}
}
}
\end{columns}
$H^{3}$ (2010) show this phenomenon in another example.
\end{frame}
\section[R.I. w/ modeled outcomes]{Randomization inference w/ modeled outcomes}
\subsection[U3 review]{Unit 3 review: Confidence intervals by inversion of tests}
\begin{frame}{Confidence intervals and models of effects}
\begin{itemize}[<+->]
\item The 3 models just considered fall under the broader model that the GOTV
generated $v$ votes per contact, some $v \in [-1, 1]$.
\item Assuming that model, the 95\% CI for $v$ is the collection of $v$s corresponding to incomplete response schedules that would not be rejected at level .05 - a confidence interval by inversion of a family of hypothesis tests.
\item This enables us to back out a confidence interval for the
``Complier average treatment effect,'' w/o violating the
intention-to-treat principle! (Rosenbaum, 1997).
\item In addition, this method of confidence interval construction is
immune to the problem of weak instruments (cf. \textit{DOS} \S~5.3 \&
contained references).
\end{itemize}
\end{frame}
\begin{frame}{Estimates and models of effects}
\begin{itemize}
\item If you want an estimate to go with such a confidence interval,
the convention is to report a \textit{Hodges-Lehmann} estimate ---
the limit of 100*$(1-\alpha)$\% CIs, as $\alpha \uparrow
1$\footnote{Assuming the limit exists and contains a single
point. If you want to compute (rather than interpret) an HL
estimate, get the precise definition, as e.g. in \textit{DOS} \S~2.4.3. }.
\item There's no precise analogue of the ``standard error''\ldots
\item So you can't use $\hat{\theta} \pm z_{*}\mathrm{s.e.}(\hat
\theta)$ as a CI.
\item However, for the spirit of a ``standard error'', some report a 2/3 CI alongside a 95\% CI (Mosteller \& Tukey, 1977, \textit{Data analysis and regression}).
\end{itemize}
\end{frame}
\subsection{Example: Violence in Medell{\'i}n}
\begin{frame}
\frametitle{Example: Violence and public infrastructure in Medell{\'i}n, Colombia}
\begin{columns}
\begin{column}{.5\linewidth}
\begin{itemize}
\item 2 million residents; 16 districts
\item Pre-intervention: 60\% poverty rate, 20\% unemployment, homicide 185 p
er 100K
\item High residential segregation
\item<2-> 2004-2006: infrastructure intervention for certain poor neighborho
ods.
\end{itemize}
\end{column}
\begin{column}{.5\linewidth}
\only<1>{\igrphx{medellin-conc-pov}}
\only<2-\mynoteonly>{\igrphx{medellin-gondola}}
\end{column}
\end{columns}
\end{frame}
\itnote{
\item 2017+: Cycled back to this later in course, not during unit 3.
Ordinarily it's too much at first pass.
\item (strata will enter the story because the end analysis involved
matching)
}
\begin{frame}[fragile]{A model of effects for homicide rates in Medellin}
Each Medellin neighborhood provides several years of non-independent
data. If we're willing to model Metrocable as a natural experiment,
we can borrow longitudinal data methods, without having to adopt their
dependence assumptions. For instance, using random
effects:
\begin{enumerate}[<+->]
\item Let
$y(T)=$ neighborhood homicide rate in year $T=2002, \ldots, 2008$. We'll test models of
effects of form, for rates $r \leq 0$:
$$H_{0}: y_{t}(T) = \left\{ \begin{array}{lr}\exp((T-2004) r/4)
y_{c}(T),& T> 2004; \\
y_{c}(T),& T\leq 2004.\end{array} \right.$$
\item Given $H_{0}$, fit a random effects model of this form:
\begin{semiverbatim}
lmer(Count \textasciitilde\ year + (year+1|nh) +\ \pause
\alert<@+| handout:0>{offset}( nhTrt*(yr>2004)*(r/4)*(yr-2004) ),
family=poisson, data=homd)
\end{semiverbatim}
\item Fitted params include ``fixed'' intercept and slope,
$\hat{\beta}_{0(r)}$ and $ \hat{\beta}_{1(r)}$,\pause plus a
``random'' slope and intercept (also specific to $r$) for
each n-hood.
\item To test $H_{0}$, I used a test statistic comparing $t$ vs $c$
n-hoods' fitted intercepts. For reference distribution,
intercepts shuffled within matched sets.
\end{enumerate}
\end{frame}
\begin{frame}<\nottheirhandout>{Outcome analysis for the Medellin study}
\framesubtitle{Official statistics on n-hood violence}
\begin{center}
\igrphx[width=\linewidth]{medellin-TEs-homicide}
\end{center}
\end{frame}
\begin{frame}<\nottheirhandout>{Outcome analysis for the Medellin
study}
\framesubtitle{Outcomes constructed from survey responses}
\begin{center}
\igrphx[width=\linewidth]{medellin-TEs-amenities}
\end{center}
\end{frame}
\section{matching prior to probability sampling}
\begin{frame}{Example: propensity matching prior to cluster sampling}
\framesubtitle{to balance internal and external validity}
\begin{itemize}[<+->]
\item \only<2->{\sout}{Question: how did Grutter v. Bollinger affect applicants'
responses to the diversity essay?}
\item Question: how applicants responses to diversity essay vary by
race of applicant?
\item B/c race was so confounded w/ class, Kirkland \& Hansen (2011)
propensity-matched, then studied a sample of propensity matched
sets (clusters) and unmatched applicants.
\end{itemize}
\addtolength{\tabcolsep}{-\tabcolsepadj}
{\footnotesize
\begin{center}
\begin{tabular}{rrrrrrrrr}
\hline & \multicolumn{2}{c}{Matched:} & \multicolumn{2}{c}{Matches:} & \multicolumn{1}{c}{Sampling} & \multicolumn{2}{c}{Unmatched:} & \multicolumn{1}{c}{Smpling} \\ & Tot. \# & Spl. \# & Tot. \# & Spl. \# & weight & Tot. \# & Spl. \# & weight. \\
\hline
[0,30] & 1400 & 54 & 540 & 20 & 27 & 1600 & 10 & 160 \\
(30,60] & 2600 & 45 & 880 & 15 & 59 & 9300 & 10 & 930 \\
(60,100] & 610 & 47 & 200 & 15 & 14 & 2200 & 10 & 220 \\
\hline
\end{tabular}
\end{center}
}
\addtolength{\tabcolsep}{\tabcolsepadj}
\end{frame}
\end{document}