-
Notifications
You must be signed in to change notification settings - Fork 6
/
day15-NaturalExperimentsRDD.Rmd
679 lines (518 loc) · 20.4 KB
/
day15-NaturalExperimentsRDD.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
---
title: |
| Natural Experiments and Discontinuities
| ICPSR 2021 Session 1
date: '`r format(Sys.Date(), "%B %d, %Y")`'
author: |
| Jake Bowers, Ben Hansen, Tom Leavitt
author-meta: Jake Bowers, Ben Hansen, Tom Leavitt
bibliography:
- 'BIB/MasterBibliography.bib'
fontsize: 10pt
geometry: margin=1in
graphics: yes
biblio-style: authoryear-comp
colorlinks: true
biblatexoptions:
- natbib=true
output:
beamer_presentation:
slide_level: 2
keep_tex: true
latex_engine: xelatex
citation_package: biblatex
template: icpsr.beamer
incremental: true
includes:
in_header:
- defs-all.sty
md_extensions: +raw_attribute-tex_math_single_backslash+autolink_bare_uris+ascii_identifiers+tex_math_dollars
pandoc_args: [ "--csl", "chicago-author-date.csl" ]
---
<!-- To show notes -->
<!-- https://stackoverflow.com/questions/44906264/add-speaker-notes-to-beamer-presentations-using-rmarkdown -->
```{r setup1_env, echo=FALSE, include=FALSE}
library(here)
source(here::here("rmd_setup.R"))
opts_chunk$set(echo = TRUE, digits = 4)
```
```{r setup2_loadlibs, echo=FALSE, include=FALSE}
## Load all of the libraries that we will use when we compile this file
## We are using the renv system. So these will all be loaded from a local library directory
library(dplyr)
library(ggplot2)
library(coin)
library(RItools)
library(optmatch)
library(estimatr)
library(dplyr)
library(MASS)
library(magrittr)
library(tidyr)
library(haven)
library(parallel)
library(rdd)
```
## Today
1. Agenda: Natural experiments and discontinuities (with and without regression).
3. Questions arising from the reading or assignments or life?
## So far:
- Q: How can we argue that the relationship between $Z$ and $Y$ is $Z
\rightarrow Y$?
- A: By excluding alternative explanations for this relationship.
- Q: How do we exclude alternative explanations?
- A: Many approaches
1. Randomize $Z$;
2. Randomize an instrument for $Z$;
3. Remove specific $X \rightarrow Z$ relationships via stratification and/or weighting.
4. (Today:) use a discontinuity as a kind of instrument for $Z$.
# Discontinuity Designs
## General Introduction and Setup
Today we are going to use the data on close US House of Representatives races
1942--2008 used in @caugheysekhon2011.^[The full replication data is
available for download
\href{http://sekhon.berkeley.edu/rep/RDReplication.zip}{here}. But we read it
directly below.] @caugheysekhon2011 engage in a debate whose
participants seek to identify the causal effect of the so-called "incumbency
advantage." That is, what effect does a candidate's status as an incumbent
have on whether or not that candidate wins an election? Obviously, whether or
not a candidate is an incumbent is *not* randomly assigned.
Let's first load the data:
```{r}
rdd_data <- read_dta("http://jakebowers.org/Matching/RDReplication.dta") %>%
filter(Use == 1) ## Use is indicator for whether unit is included in RD incumbency advantage sample
```
## The Running Variable
The "running variable" is called `DifDPct`, which is defined as the Democratic margin of victory or defeat in the election; in other words, DifDPct is the difference between the percentage of all votes that were cast for the leading Democrat in the race and the percentage cast for the leading non-Democrat. Races in which no Democrat ran or in which the top two vote-getters were both Democrats are coded as missing.
```{r}
running_var <- matrix(c("DifDPct", "Democrat Margin of Victory"),
ncol = 2,
byrow = TRUE
)
dimnames(running_var) <- list(1, c("Running Variable", "Description"))
kable(running_var)
```
## The Treatment Variable
The treatment variable is whether or not the Democratic candidate wins the election or not. If the candidate wins the election, then that candidate is assigned to "treatment." If the candidate loses the election, then he or she is assigned to "control.''
```{r}
treatment <- matrix(c("DemWin", "Democrat Wins Election"),
ncol = 2,
byrow = TRUE
)
dimnames(treatment) <- list(1, c("Treatment", "Description"))
kable(treatment)
```
Now let's quickly look at the empirical distribution of the treatment variable:
```{r}
table(rdd_data$DemWin)
```
## Outcome Variables
In @caugheysekhon2011, the primary outcome variables of interest are as
follows: whether a democrat wins the next election, the proportion voting for
a democrat in the next election, and the democratic vote margin in the next
election.
```{r echo=FALSE}
dvs <- matrix(c(
"DWinNxt", "Dem Win t + 1",
"DPctNxt", "Dem % t + 1",
"DifDPNxt", "Dem % Margin t + 1"
),
ncol = 2,
byrow = TRUE
)
dimnames(dvs) <- list(
seq(
from = 1,
to = 3,
by = 1
),
c("Outcome", "Description")
)
kable(dvs)
```
## Outcomes and Running Variables
Effect of a democrat winning on democrat votes in next election? Alternative explanations? Reasonable comparisons?
```{r echo=FALSE, out.width=".7\\textwidth", warnings=FALSE}
g <- ggplot(rdd_data,aes(x=DifDPct, y=DPctNxt,color=DemWin)) +
geom_point()
print(g)
```
## Baseline Covariates
The relevant baseline covariates (all measured prior to the realization of the running variable) are:
```{r echo=FALSE}
covs <- matrix(c(
"DWinPrv", "Dem Win t - 1",
"DPctPrv", "Dem % t - 1",
"DifDPPrv", "Dem % Margin t - 1",
"IncDWNOM1", "Inc's D1 NOMINATE",
"DemInc", "Dem Inc in Race",
"NonDInc", "Rep Inc in Race",
"PrvTrmsD", "Dem's # Prev Terms",
"PrvTrmsO", "Rep's # Prev Terms",
"RExpAdv", "Rep Experience Adv",
"DExpAdv", "Dem Experience Adv",
"ElcSwing", "Partisan Swing",
"CQRating3", "CQ Rating {-1, 0, 1}",
"DSpndPct", "Dem Spending %",
"DDonaPct", "Dem Donation %",
"SoSDem", "Dem Sec of State",
"GovDem", "Dem Governor",
"DifPVDec", "Dem Pres % Margin", ## average over decade
"DemOpen", "Dem-held Open Seat",
"NonDOpen", "Rep-held Open Seat",
"OpenSeat", "Open Seat",
"VtTotPct", "Voter Turnout %",
"GovWkPct", "Pct Gov't Worker",
"UrbanPct", "Pct Urban",
"BlackPct", "Pct Black",
"ForgnPct", "Pct Foreign Born"
),
ncol = 2,
byrow = TRUE
)
dimnames(covs) <- list(
seq(
from = 1,
to = 25,
by = 1
),
c("Covariate", "Description")
)
kable(covs)
```
## Local Randomization Framework
Let the index $i \in \left\{1, \dots , n\right\}$ run over the $n$ experimental units. In the context of a regression discontinuity design, let $R_i$ denote the random "score variable" (also known as "running variable''). The random assignment variable, $Z_i \in \left\{0, 1\right\}$, which indicates whether subject $i$ is assigned to treatment, $Z_i = 1$, or to control, $Z_i = 0$, is a deterministic function of $R_i$. In the context of the incumbency advantage study, we can define $Z_i$ as follows:
\begin{align*}
Z_i \equiv \mathbbm{I}\left[R_i > 0 \right],
\end{align*}
where $\mathbbm{I}\left[\cdot\right]$ is an indicator function that is $1$ if the argument to the function is true and $0$ if false. In this particular study, if the margin of victory is greater than $0$, then candidate $i$ is treated ($Z_i = 1$), and if not, then candidate $i$ is assigned to control ($Z_i = 0$).
\medskip
Let $W_0 = [\underline{r}, \overline{r}]$, where $\underline{r} < r_0 < \overline{r}$, denote the window around the cutpoint (or threshold value), $r_0$, that sorts units into treatment or control.
\medskip
How to choose the window?
## Optimal Bandwidth Selection {.allowframebreaks}
We know from @hansensales2015, @rosenbaum2008, @berger1988 that "if a researcher
pre-specifies a sequence of hypotheses and corresponding level-$\alpha$ tests,
tests those hypotheses in order, and stops testing after the first non-rejected
hypothesis, then the probability of incorrectly rejecting at least one correct
hypothesis is at most $\alpha$" \citep[p. 185]{hansensales2015}.
\smallskip
As applied to bandwidth selection in the RDD context, the SIUP implies that one should start with a set of candidate bandwidths and sequentially test for covariate balance (beginning from either the largest candidate bandwidth or the smallest candidate bandwidth).
\smallskip
Let's specify a set of candidate bandwidths and then sequentially test covariate balance. Before actually testing, though, we want to specify a balance criterion and then maximize effective sample size subject to that criterion.
```{r}
bal_fmla <- reformulate(covs[1:25], response = "DemWin")
candidate_bands <- seq(
from = -5,
to = 5,
by = .1
)
```
Now let's first filter our dataset and check for balance in the largest candidate bandwidth spanning from $-5$ to $5$.
```{r}
lower_bound <- seq(from = -5, to = -0.1, by = 0.1)
upper_bound <- seq(from = 0.1, to = 5, by = 0.1) %>%
sort(decreasing = TRUE)
rdd_dataA <- rdd_data
rdd_dataA %<>% filter(DifDPct > lower_bound[1] & DifDPct < upper_bound[1])
rdd_dataA %$% summary(DifDPct)
xBalance(
fmla = bal_fmla,
data = rdd_dataA,
report = "chisquare.test"
)
xb1 <- xBalance(
fmla = bal_fmla,
data = rdd_dataA,
report = "all"
)
xb1$results
```
Now let's write a function to perform this same procedure over all candidate
bandwidth sizes beginning with the largerst candidate bandwidth and
subsequently testing smaller and smaller bandwidths in order.
```{r}
chi_squared_balance <- function(i,
running_var,
bal_fmla,
data) {
# Preliminaries
suppressMessages(stopifnot(require(dplyr, quietly = TRUE)))
suppressMessages(stopifnot(require(parallel, quietly = TRUE)))
suppressMessages(stopifnot(require(magrittr, quietly = TRUE)))
suppressMessages(stopifnot(require(RItools, quietly = TRUE)))
lower_bound <- seq(from = -5, to = -0.1, by = 0.1)
upper_bound <- seq(from = 0.1, to = 5, by = 0.1) %>%
sort(decreasing = TRUE)
data %<>% filter(running_var > lower_bound[i] & running_var < upper_bound[i])
# Effective Sample Size
ess <- nrow(data)
p_value <- xBalance(
fmla = bal_fmla,
data = data,
report = "chisquare.test"
)$overall[[3]]
bands <- cbind(ess, p_value, lower_bound[i], upper_bound[i])
return(bands)
}
is <- seq(
from = 1,
to = length(seq(
from = -5,
to = -0.1,
by = 0.1
)),
by = 1
)
```
Now use the function:
```{r}
cl <- makeCluster(parallel::detectCores())
band_df <- data.frame(t(parSapply(cl, is,
chi_squared_balance,
running_var = rdd_data$DifDPct,
bal_fmla = bal_fmla,
data = rdd_data
))) %>%
rename(
ess = X1,
p_value = X2
)
parallel::stopCluster(cl)
kable(band_df)
```
And look at the results
```{r}
band_df$limits <- paste(round(band_df$X3,1),round(band_df$X4,1),sep=",")
g2 <- ggplot(band_df,aes(x=p_value,y=ess,label=limits))+
geom_point() +
geom_label()
print(g2)
```
```{r}
band_df[47,c("ess","p_value","X3","X4")]
```
```{r}
g + xlim(c(-.4,.4))
```
## Outcome Analysis and the Exclusion Restriction {.allowframebreaks}
Using the discontinuity as an instrument brings us back to instrumental variables.
\medskip
Let's assume that within a certain bandwidth around the cutpoint, $W_0$,
the assumption of a local randomized experiment obtains. In other words,
probabilties are uniformly distributed on $R_i \in W_0$ for all $i$. Yet even
if this assumption obtains, the running variable, $R$, might still relate to
potential outcomes through a mechanism other than $Z \given R \in W_0$.
\medskip
The exclusion restriction is a strong assumption in the RDD context since $Z$
is a deterministic function of the running variable, $R$, which implies that
treatment and control groups, by construction, will be imbalanced on the
running variable. Thus, if $R$ relates to $(y_{c}, y_{t})$, through a mechanism
other than $Z \given R \in W_0$, then the exlcusion restriction is violated.
\medskip
If we think the exclusion restriction holds, then we can simply perform outcome
analysis within a window around the cutpoint where local randomization
presumably holds:
```{r}
rdd_data47 <- rdd_data %>% filter(DifDPct > lower_bound[47] & DifDPct < upper_bound[47])
rdd_data47 %>% nrow()
lm_robust(formula = DPctNxt ~ DemWin, data = rdd_data47)
```
We coud also perform permutation inference within the window around the cutpoint under the assumption that local randomization holds (useful especially if the window contains relatively few observations, skewed outcomes, etc..):
```{r}
set.seed(1:5)
sharp_null_dist <- replicate(
n = 10^3,
expr = coef(lm(formula = DPctNxt ~ sample(DemWin), data = rdd_data47))[[2]]
)
obsstat <- coef(lm(formula = DPctNxt ~ DemWin, data = rdd_data47))[["DemWin"]]
upper_p_val <- mean(sharp_null_dist >= obsstat)
lower_p_val <- mean(sharp_null_dist <= obsstat)
two_sided_p_val <- min(1, 2 * min(upper_p_val, lower_p_val))
two_sided_p_val
rdd_data47$DemWinF <- factor(rdd_data47$DemWin)
## Alternatively
wctest <- wilcox_test(DPctNxt~DemWinF,data=rdd_data47,distribution=approximate(nresample=1000))
ttest <- oneway_test(DPctNxt~DemWinF,data=rdd_data47,distribution=approximate(nresample=1000))
pvalue(wctest)
pvalue(ttest)
```
## Outcome Analysis and the Exclusion Restriction {.allowframebreaks}
What can we do if the exclusion restriction is violated? Or worse, if the
running variable, $R$, confounds the relationship between $Z$ and $Y$? One
approach is to model potential outcomes as a function of the running variable,
and then to "de-trend" (or "transform'') the outcome variable and to
subsequently make the claim of "residual ignorability."
For example, we could do the following:
```{r}
tmp_lm <- lm(DPctNxt ~ DifDPct, data = rdd_data47)
rdd_data47 %<>% mutate(resid_DPctNxt = resid(tmp_lm))
```
```{r}
## An influential point robust loess smoother.
ggplot(
data = rdd_data47,
mapping = aes(x = DifDPct, y = DPctNxt)
) +
geom_point() +
geom_smooth(method = lm, se = FALSE) +
geom_smooth(method = rlm, se = FALSE, colour = "black") +
geom_smooth(
method = loess, se = FALSE, colour = "red",
method.args = list(deg = 1, span = 1 / 3, family = "symmetric")
) +
xlab("Democratic Margin of Victory (Running Variable)") +
ylab("Democratic Vote Percentage in Next Election (Outcome Variable)") +
ggtitle("Relationship between Running Variable and Outcome") +
geom_vline(xintercept = 0, linetype = "dashed")
```
## Outcome Analysis
We can now perform outcome analysis on the detrended outcome variable:
```{r}
lm_robust(formula = resid_DPctNxt ~ DemWin, data = rdd_data47)
```
@saleshansen2020, however, propose robust regression, which is less sensitive to violations of the regression model's assumptions --- still removing linear trend here.
```{r}
tmp_rlm <- rlm(DPctNxt ~ DifDPct, data = rdd_data47)
rdd_data47 %<>% mutate(rlm_resid_DPctNxt = resid(tmp_rlm))
lm_robust(formula = rlm_resid_DPctNxt ~ DemWin, data = rdd_data47)
wctest2 <- wilcox_test(rlm_resid_DPctNxt~DemWinF,data=rdd_data47,distribution=approximate(nresample=1000))
ttest2<- oneway_test(rlm_resid_DPctNxt~DemWinF,data=rdd_data47,distribution=approximate(nresample=1000))
pvalue(wctest2)
pvalue(ttest2)
```
## Matching to create variable "bandwidths"
```{r}
mdist <- match_on(bal_fmla,data=rdd_data)
pm1 <- pairmatch(mdist,data=rdd_data,remove.unmatchables = TRUE)
summary(pm1)
```
## Continuity in Potential Outcomes Framework {.allowframebreaks}
An alternative approach to regression discontinuity is common in the econometrics literature \citep[see, e.g.,][]{imbenslemieux2008,lee2008,calonicoetal2014,hahnetal2001,leelemieux2010,mccrary2008}. As @hahnetal2001 and @imbenslemieux2008 state, the estimand (i.e., the quantity we seek to estimate) is:
\begin{align*}
\lim \limits_{r \downarrow 0}\E\left[Y \given R = r > 0\right] - \lim \limits_{r \uparrow 0}\E\left[Y \given R = r < 0 \right] & \\
& = \E\left[Y_t \given R = 0\right] - \E\left[Y_c \given R = 0 \right] \\
& = \E\left[Y_t - Y_c \given R = 0 \right]
\end{align*}
This estimand assumes that the (1) left and right limits of $\E\left[Y \given R \right]$ exist as $R$ approaches the cutpoint $r = 0$ and (2) conditional expectation of the outcome given the running variable is left-continuous and right-continuous at the cutpoint $r = 0$, where in general a function $f$ is continuous from the right at $a$ if $\lim \limits_{x \downarrow a} f(x) = f(a)$ and is continuous from the left if $\lim \limits_{x \uparrow a} f(x) = f(a)$.
## Continuity in Potential Outcomes Framework {.allowframebreaks}
We don't actually need to know the true form of $\E[\left[Y \given R =
r\right]$. Instead, we can use methods, such as local regression, to
approximate the function of $\E[\left[Y \given R = r\right]$ at values of $R$
below and above the cutpoint.
```{r}
rdd_data %<>% arrange(DifDPct)
rdd_data_cp <- dplyr::select(.data = rdd_data, DifDPct, DPctNxt, DemWin) %>%
mutate(cp = ifelse(test = DifDPct < 0, yes = "Below Cutpoint",
no = "Above Cutpoint"
))
```
```{r echo=FALSE}
ggplot(
data = rdd_data_cp,
mapping = aes(
x = DifDPct,
y = DPctNxt
)
) +
geom_point() +
geom_smooth(method = lm, se = FALSE) +
geom_smooth(method = rlm, se = FALSE, colour = "black") +
geom_smooth(method = loess, se = FALSE, colour = "red", method.args = list(deg = 1, span = 1 / 2, family = "symmetric")) +
theme(
plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(size = 4)
) +
xlab("Democratic Margin of Victory (Running Variable)") +
ylab("Democratic Vote Percentage in Next Election (Outcome Variable)") +
ggtitle("Relationship between Running Variable and Outcome") +
facet_wrap(
facets = ~cp,
nrow = 1,
ncol = 2
)
```
## Continuity in Potential Outcomes Framework {.allowframebreaks}
Let's first use a simple linear model to estimate the relationship on both sides of the cutpoint. Here we are not using a window.
```{r}
lm_predict_below <- predict(
object = lm(formula = DPctNxt ~ DifDPct, data = rdd_data, subset = DifDPct < 0),
newdata = data.frame(DifDPct = 0)
)
lm_predict_above <- predict(
object = lm(formula = DPctNxt ~ DifDPct, data = rdd_data, subset = DifDPct > 0),
newdata = data.frame(DifDPct = 0)
)
lm_predict_above - lm_predict_below
```
## Continuity in Potential Outcomes Framework {.allowframebreaks}
We could also do the same thing with LOESS regression:
```{r}
loess_predict_below <- predict(
object = loess(
formula = DPctNxt ~ DifDPct,
data = rdd_data,
subset = DifDPct < 0,
surface = "direct"
),
newdata = data.frame(DifDPct = 0)
)
loess_predict_above <- predict(
object = loess(
formula = DPctNxt ~ DifDPct,
data = rdd_data,
subset = DifDPct > 0,
surface = "direct"
),
newdata = data.frame(DifDPct = 0)
)
loess_predict_above - loess_predict_below
```
We could also use a $p$th order polynomial. For example:
```{r}
lm_poly_predict_below <- predict(
object = lm(
formula = DPctNxt ~ I(DifDPct^3) + I(DifDPct^2) + DifDPct,
data = rdd_data, subset = DifDPct < 0
),
newdata = data.frame(DifDPct = 0)
)
lm_poly_predict_above <- predict(
object = lm(
formula = DPctNxt ~ I(DifDPct^3) + I(DifDPct^2) + DifDPct,
data = rdd_data, subset = DifDPct > 0
),
newdata = data.frame(DifDPct = 0)
)
lm_poly_predict_above - lm_poly_predict_below
```
This next calculates a bandwidth and then does what we just did above (all in one step):
```{r}
rdest1 <- RDestimate(DPctNxt~DifDPct,data=rdd_data, se.type="HC3")
summary(rdest1)
plot(rdest1)
```
```{r}
library(rdrobust)
rdrest1 <- rdrobust(y=rdd_data$DPctNxt,x=rdd_data$DifDPct)
summary(rdrest1)
rdplot(y=rdd_data$DPctNxt,x=rdd_data$DifDPct)
```
\citet[647]{cattaneotitiunikvazquez-bare2017} view the potential outcomes as a random sample from an infinite superpopulation. How does this fit with this course's emphasis on finite population, design-based causal inference?
## Summary
- A discontinuity can be an instrument --- creating a "natural experiment" (We
recommend @dunning2012 for more on natural experiments.)
- Notice that we could have matched observations pre-vs-post within a window,
to strengthen the argument for the "as randomized" assumption.
- One can use a model to help the argument that the pre- and post-observations
are comparable (for example, removing trends).
- "Regression discontinuity" tends to imply use of a discontinity plus a
continuity assumption for estimation --- estimation of a difference in
curves at the cut-point.
- So, there are two major approaches to the use of discontinuities for causal
inference:
1. It is a "natural experiment" that allows a kind of instrumental
variables estimation plus or minus stratification or trend adjustment;
2. It is like an instrument in the middle of a continuous and smooth process
that we aim to approximate via flexible data models.
## References