-
Notifications
You must be signed in to change notification settings - Fork 36
/
conn.go
928 lines (800 loc) · 26 KB
/
conn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
package mint
import (
"crypto"
"crypto/x509"
"encoding/hex"
"errors"
"fmt"
"io"
"net"
"reflect"
"sync"
"time"
)
type Certificate struct {
Chain []*x509.Certificate
PrivateKey crypto.Signer
}
type PreSharedKey struct {
CipherSuite CipherSuite
IsResumption bool
Identity []byte
Key []byte
NextProto string
ReceivedAt time.Time
ExpiresAt time.Time
TicketAgeAdd uint32
}
type PreSharedKeyCache interface {
Get(string) (PreSharedKey, bool)
Put(string, PreSharedKey)
Size() int
}
// A CookieHandler can be used to give the application more fine-grained control over Cookies.
// Generate receives the Conn as an argument, so the CookieHandler can decide when to send the cookie based on that, and offload state to the client by encoding that into the Cookie.
// When the client echoes the Cookie, Validate is called. The application can then recover the state from the cookie.
type CookieHandler interface {
// Generate a byte string that is sent as a part of a cookie to the client in the HelloRetryRequest
// If Generate returns nil, mint will not send a HelloRetryRequest.
Generate(*Conn) ([]byte, error)
// Validate is called when receiving a ClientHello containing a Cookie.
// If validation failed, the handshake is aborted.
Validate(*Conn, []byte) bool
}
type PSKMapCache map[string]PreSharedKey
func (cache PSKMapCache) Get(key string) (psk PreSharedKey, ok bool) {
psk, ok = cache[key]
return
}
func (cache *PSKMapCache) Put(key string, psk PreSharedKey) {
(*cache)[key] = psk
}
func (cache PSKMapCache) Size() int {
return len(cache)
}
// Config is the struct used to pass configuration settings to a TLS client or
// server instance. The settings for client and server are pretty different,
// but we just throw them all in here.
type Config struct {
// Client fields
ServerName string
// Server fields
SendSessionTickets bool
TicketLifetime uint32
TicketLen int
EarlyDataLifetime uint32
AllowEarlyData bool
// Require the client to echo a cookie.
RequireCookie bool
// A CookieHandler can be used to set and validate a cookie.
// The cookie returned by the CookieHandler will be part of the cookie sent on the wire, and encoded using the CookieProtector.
// If no CookieHandler is set, mint will always send a cookie.
// The CookieHandler can be used to decide on a per-connection basis, if a cookie should be sent.
CookieHandler CookieHandler
// The CookieProtector is used to encrypt / decrypt cookies.
// It should make sure that the Cookie cannot be read and tampered with by the client.
// If non-blocking mode is used, and cookies are required, this field has to be set.
// In blocking mode, a default cookie protector is used, if this is unused.
CookieProtector CookieProtector
// The ExtensionHandler is used to add custom extensions.
ExtensionHandler AppExtensionHandler
RequireClientAuth bool
// Time returns the current time as the number of seconds since the epoch.
// If Time is nil, TLS uses time.Now.
Time func() time.Time
// RootCAs defines the set of root certificate authorities
// that clients use when verifying server certificates.
// If RootCAs is nil, TLS uses the host's root CA set.
RootCAs *x509.CertPool
// InsecureSkipVerify controls whether a client verifies the
// server's certificate chain and host name.
// If InsecureSkipVerify is true, TLS accepts any certificate
// presented by the server and any host name in that certificate.
// In this mode, TLS is susceptible to man-in-the-middle attacks.
// This should be used only for testing.
InsecureSkipVerify bool
// Shared fields
Certificates []*Certificate
// VerifyPeerCertificate, if not nil, is called after normal
// certificate verification by either a TLS client or server. It
// receives the raw ASN.1 certificates provided by the peer and also
// any verified chains that normal processing found. If it returns a
// non-nil error, the handshake is aborted and that error results.
//
// If normal verification fails then the handshake will abort before
// considering this callback. If normal verification is disabled by
// setting InsecureSkipVerify then this callback will be considered but
// the verifiedChains argument will always be nil.
VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
CipherSuites []CipherSuite
Groups []NamedGroup
SignatureSchemes []SignatureScheme
NextProtos []string
PSKs PreSharedKeyCache
PSKModes []PSKKeyExchangeMode
NonBlocking bool
UseDTLS bool
RecordLayer RecordLayerFactory
// The same config object can be shared among different connections, so it
// needs its own mutex
mutex sync.RWMutex
}
// Clone returns a shallow clone of c. It is safe to clone a Config that is
// being used concurrently by a TLS client or server.
func (c *Config) Clone() *Config {
c.mutex.Lock()
defer c.mutex.Unlock()
return &Config{
ServerName: c.ServerName,
SendSessionTickets: c.SendSessionTickets,
TicketLifetime: c.TicketLifetime,
TicketLen: c.TicketLen,
EarlyDataLifetime: c.EarlyDataLifetime,
AllowEarlyData: c.AllowEarlyData,
RequireCookie: c.RequireCookie,
CookieHandler: c.CookieHandler,
CookieProtector: c.CookieProtector,
ExtensionHandler: c.ExtensionHandler,
RequireClientAuth: c.RequireClientAuth,
Time: c.Time,
RootCAs: c.RootCAs,
InsecureSkipVerify: c.InsecureSkipVerify,
Certificates: c.Certificates,
VerifyPeerCertificate: c.VerifyPeerCertificate,
CipherSuites: c.CipherSuites,
Groups: c.Groups,
SignatureSchemes: c.SignatureSchemes,
NextProtos: c.NextProtos,
PSKs: c.PSKs,
PSKModes: c.PSKModes,
NonBlocking: c.NonBlocking,
UseDTLS: c.UseDTLS,
}
}
func (c *Config) Init(isClient bool) error {
c.mutex.Lock()
defer c.mutex.Unlock()
// Set defaults
if len(c.CipherSuites) == 0 {
c.CipherSuites = defaultSupportedCipherSuites
}
if len(c.Groups) == 0 {
c.Groups = defaultSupportedGroups
}
if len(c.SignatureSchemes) == 0 {
c.SignatureSchemes = defaultSignatureSchemes
}
if c.TicketLen == 0 {
c.TicketLen = defaultTicketLen
}
if !reflect.ValueOf(c.PSKs).IsValid() {
c.PSKs = &PSKMapCache{}
}
if len(c.PSKModes) == 0 {
c.PSKModes = defaultPSKModes
}
return nil
}
func (c *Config) ValidForServer() bool {
return (reflect.ValueOf(c.PSKs).IsValid() && c.PSKs.Size() > 0) ||
(len(c.Certificates) > 0 &&
len(c.Certificates[0].Chain) > 0 &&
c.Certificates[0].PrivateKey != nil)
}
func (c *Config) ValidForClient() bool {
return len(c.ServerName) > 0
}
func (c *Config) time() time.Time {
t := c.Time
if t == nil {
t = time.Now
}
return t()
}
var (
defaultSupportedCipherSuites = []CipherSuite{
TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384,
}
defaultSupportedGroups = []NamedGroup{
P256,
P384,
FFDHE2048,
X25519,
}
defaultSignatureSchemes = []SignatureScheme{
RSA_PSS_SHA256,
RSA_PSS_SHA384,
RSA_PSS_SHA512,
ECDSA_P256_SHA256,
ECDSA_P384_SHA384,
ECDSA_P521_SHA512,
}
defaultTicketLen = 16
defaultPSKModes = []PSKKeyExchangeMode{
PSKModeKE,
PSKModeDHEKE,
}
)
type ConnectionState struct {
HandshakeState State
CipherSuite CipherSuiteParams // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
PeerCertificates []*x509.Certificate // certificate chain presented by remote peer
VerifiedChains [][]*x509.Certificate // verified chains built from PeerCertificates
NextProto string // Selected ALPN proto
UsingPSK bool // Are we using PSK.
UsingEarlyData bool // Did we negotiate 0-RTT.
}
// Conn implements the net.Conn interface, as with "crypto/tls"
// * Read, Write, and Close are provided locally
// * LocalAddr, RemoteAddr, and Set*Deadline are forwarded to the inner Conn
type Conn struct {
config *Config
conn net.Conn
isClient bool
state stateConnected
hState HandshakeState
handshakeMutex sync.Mutex
handshakeAlert Alert
handshakeComplete bool
readBuffer []byte
in, out RecordLayer
hsCtx *HandshakeContext
}
func NewConn(conn net.Conn, config *Config, isClient bool) *Conn {
c := &Conn{conn: conn, config: config, isClient: isClient, hsCtx: &HandshakeContext{}}
if !config.UseDTLS {
if config.RecordLayer == nil {
c.in = NewRecordLayerTLS(c.conn, DirectionRead)
c.out = NewRecordLayerTLS(c.conn, DirectionWrite)
} else {
c.in = config.RecordLayer.NewLayer(c.conn, DirectionRead)
c.out = config.RecordLayer.NewLayer(c.conn, DirectionWrite)
}
c.hsCtx.hIn = NewHandshakeLayerTLS(c.hsCtx, c.in)
c.hsCtx.hOut = NewHandshakeLayerTLS(c.hsCtx, c.out)
} else {
c.in = NewRecordLayerDTLS(c.conn, DirectionRead)
c.out = NewRecordLayerDTLS(c.conn, DirectionWrite)
c.hsCtx.hIn = NewHandshakeLayerDTLS(c.hsCtx, c.in)
c.hsCtx.hOut = NewHandshakeLayerDTLS(c.hsCtx, c.out)
c.hsCtx.timeoutMS = initialTimeout
c.hsCtx.timers = newTimerSet()
c.hsCtx.waitingNextFlight = true
}
c.in.SetLabel(c.label())
c.out.SetLabel(c.label())
c.hsCtx.hIn.nonblocking = c.config.NonBlocking
return c
}
// Read up
func (c *Conn) consumeRecord() error {
pt, err := c.in.ReadRecord()
if pt == nil {
logf(logTypeIO, "extendBuffer returns error %v", err)
return err
}
switch pt.contentType {
case RecordTypeHandshake:
logf(logTypeHandshake, "Received post-handshake message")
// We do not support fragmentation of post-handshake handshake messages.
// TODO: Factor this more elegantly; coalesce with handshakeLayer.ReadMessage()
start := 0
headerLen := handshakeHeaderLenTLS
if c.config.UseDTLS {
headerLen = handshakeHeaderLenDTLS
}
for start < len(pt.fragment) {
if len(pt.fragment[start:]) < headerLen {
return fmt.Errorf("Post-handshake handshake message too short for header")
}
hm := &HandshakeMessage{}
hm.msgType = HandshakeType(pt.fragment[start])
hmLen := (int(pt.fragment[start+1]) << 16) + (int(pt.fragment[start+2]) << 8) + int(pt.fragment[start+3])
if len(pt.fragment[start+headerLen:]) < hmLen {
return fmt.Errorf("Post-handshake handshake message too short for body")
}
hm.body = pt.fragment[start+headerLen : start+headerLen+hmLen]
// XXX: If we want to support more advanced cases, e.g., post-handshake
// authentication, we'll need to allow transitions other than
// Connected -> Connected
state, actions, alert := c.state.ProcessMessage(hm)
if alert != AlertNoAlert {
logf(logTypeHandshake, "Error in state transition: %v", alert)
c.sendAlert(alert)
return io.EOF
}
for _, action := range actions {
alert = c.takeAction(action)
if alert != AlertNoAlert {
logf(logTypeHandshake, "Error during handshake actions: %v", alert)
c.sendAlert(alert)
return io.EOF
}
}
var connected bool
c.state, connected = state.(stateConnected)
if !connected {
logf(logTypeHandshake, "Disconnected after state transition: %v", alert)
c.sendAlert(alert)
return io.EOF
}
start += headerLen + hmLen
}
case RecordTypeAlert:
logf(logTypeIO, "extended buffer (for alert): [%d] %x", len(c.readBuffer), c.readBuffer)
if len(pt.fragment) != 2 {
c.sendAlert(AlertUnexpectedMessage)
return io.EOF
}
if Alert(pt.fragment[1]) == AlertCloseNotify {
return io.EOF
}
switch pt.fragment[0] {
case AlertLevelWarning:
// drop on the floor
case AlertLevelError:
return Alert(pt.fragment[1])
default:
c.sendAlert(AlertUnexpectedMessage)
return io.EOF
}
case RecordTypeAck:
if !c.hsCtx.hIn.datagram {
logf(logTypeHandshake, "Received ACK in TLS mode")
return AlertUnexpectedMessage
}
return c.hsCtx.processAck(pt.fragment)
case RecordTypeApplicationData:
c.readBuffer = append(c.readBuffer, pt.fragment...)
logf(logTypeIO, "extended buffer: [%d] %x", len(c.readBuffer), c.readBuffer)
}
return err
}
func readPartial(in *[]byte, buffer []byte) int {
logf(logTypeIO, "conn.Read input buffer now has len %d", len((*in)))
read := copy(buffer, *in)
*in = (*in)[read:]
logf(logTypeVerbose, "Returning %v", string(buffer))
return read
}
// Read application data up to the size of buffer. Handshake and alert records
// are consumed by the Conn object directly.
func (c *Conn) Read(buffer []byte) (int, error) {
if _, connected := c.hState.(stateConnected); !connected {
// Clients can't call Read prior to handshake completion.
if c.isClient {
return 0, errors.New("Read called before the handshake completed")
}
// Neither can servers that don't allow early data.
if !c.config.AllowEarlyData {
return 0, errors.New("Read called before the handshake completed")
}
// If there's no early data, then return WouldBlock
if len(c.hsCtx.earlyData) == 0 {
return 0, AlertWouldBlock
}
return readPartial(&c.hsCtx.earlyData, buffer), nil
}
// The handshake is now connected.
logf(logTypeHandshake, "conn.Read with buffer = %d", len(buffer))
if alert := c.Handshake(); alert != AlertNoAlert {
return 0, alert
}
if len(buffer) == 0 {
return 0, nil
}
// Run our timers.
if c.config.UseDTLS {
if err := c.hsCtx.timers.check(time.Now()); err != nil {
return 0, AlertInternalError
}
}
// Lock the input channel
c.in.Lock()
defer c.in.Unlock()
for len(c.readBuffer) == 0 {
err := c.consumeRecord()
// err can be nil if consumeRecord processed a non app-data
// record.
if err != nil {
if c.config.NonBlocking || err != AlertWouldBlock {
logf(logTypeIO, "conn.Read returns err=%v", err)
return 0, err
}
}
}
return readPartial(&c.readBuffer, buffer), nil
}
// Write application data
func (c *Conn) Write(buffer []byte) (int, error) {
// Lock the output channel
c.out.Lock()
defer c.out.Unlock()
if !c.Writable() {
return 0, errors.New("Write called before the handshake completed (and early data not in use)")
}
// Send full-size fragments
var start int
sent := 0
for start = 0; len(buffer)-start >= maxFragmentLen; start += maxFragmentLen {
err := c.out.WriteRecord(&TLSPlaintext{
contentType: RecordTypeApplicationData,
fragment: buffer[start : start+maxFragmentLen],
})
if err != nil {
return sent, err
}
sent += maxFragmentLen
}
// Send a final partial fragment if necessary
if start < len(buffer) {
err := c.out.WriteRecord(&TLSPlaintext{
contentType: RecordTypeApplicationData,
fragment: buffer[start:],
})
if err != nil {
return sent, err
}
sent += len(buffer[start:])
}
return sent, nil
}
// sendAlert sends a TLS alert message.
// c.out.Mutex <= L.
func (c *Conn) sendAlert(err Alert) error {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
var level int
switch err {
case AlertNoRenegotiation, AlertCloseNotify:
level = AlertLevelWarning
default:
level = AlertLevelError
}
buf := []byte{byte(err), byte(level)}
c.out.WriteRecord(&TLSPlaintext{
contentType: RecordTypeAlert,
fragment: buf,
})
// close_notify and end_of_early_data are not actually errors
if level == AlertLevelWarning {
return &net.OpError{Op: "local error", Err: err}
}
return c.Close()
}
// Close closes the connection.
func (c *Conn) Close() error {
// XXX crypto/tls has an interlock with Write here. Do we need that?
return c.conn.Close()
}
// LocalAddr returns the local network address.
func (c *Conn) LocalAddr() net.Addr {
return c.conn.LocalAddr()
}
// RemoteAddr returns the remote network address.
func (c *Conn) RemoteAddr() net.Addr {
return c.conn.RemoteAddr()
}
// SetDeadline sets the read and write deadlines associated with the connection.
// A zero value for t means Read and Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetDeadline(t time.Time) error {
return c.conn.SetDeadline(t)
}
// SetReadDeadline sets the read deadline on the underlying connection.
// A zero value for t means Read will not time out.
func (c *Conn) SetReadDeadline(t time.Time) error {
return c.conn.SetReadDeadline(t)
}
// SetWriteDeadline sets the write deadline on the underlying connection.
// A zero value for t means Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetWriteDeadline(t time.Time) error {
return c.conn.SetWriteDeadline(t)
}
func (c *Conn) takeAction(actionGeneric HandshakeAction) Alert {
label := "[server]"
if c.isClient {
label = "[client]"
}
switch action := actionGeneric.(type) {
case QueueHandshakeMessage:
logf(logTypeHandshake, "%s queuing handshake message type=%v", label, action.Message.msgType)
err := c.hsCtx.hOut.QueueMessage(action.Message)
if err != nil {
logf(logTypeHandshake, "%s Error writing handshake message: %v", label, err)
return AlertInternalError
}
case SendQueuedHandshake:
_, err := c.hsCtx.hOut.SendQueuedMessages()
if err != nil {
logf(logTypeHandshake, "%s Error writing handshake message: %v", label, err)
return AlertInternalError
}
if c.config.UseDTLS {
c.hsCtx.timers.start(retransmitTimerLabel,
c.hsCtx.handshakeRetransmit,
c.hsCtx.timeoutMS)
}
case RekeyIn:
logf(logTypeHandshake, "%s Rekeying in to %s: %+v", label, action.epoch.label(), action.KeySet)
// Check that we don't have an input data in the handshake frame parser.
if len(c.hsCtx.hIn.frame.remainder) > 0 {
logf(logTypeHandshake, "%s Rekey with data still in handshake buffers", label)
return AlertDecodeError
}
err := c.in.Rekey(action.epoch, action.KeySet.Cipher, &action.KeySet)
if err != nil {
logf(logTypeHandshake, "%s Unable to rekey inbound: %v", label, err)
return AlertInternalError
}
case RekeyOut:
logf(logTypeHandshake, "%s Rekeying out to %s: %+v", label, action.epoch.label(), action.KeySet)
err := c.out.Rekey(action.epoch, action.KeySet.Cipher, &action.KeySet)
if err != nil {
logf(logTypeHandshake, "%s Unable to rekey outbound: %v", label, err)
return AlertInternalError
}
case ResetOut:
logf(logTypeHandshake, "%s Rekeying out to %s seq=%v", label, EpochClear, action.seq)
c.out.ResetClear(action.seq)
case StorePSK:
logf(logTypeHandshake, "%s Storing new session ticket with identity [%x]", label, action.PSK.Identity)
if c.isClient {
// Clients look up PSKs based on server name
c.config.PSKs.Put(c.config.ServerName, action.PSK)
} else {
// Servers look them up based on the identity in the extension
c.config.PSKs.Put(hex.EncodeToString(action.PSK.Identity), action.PSK)
}
default:
logf(logTypeHandshake, "%s Unknown action type", label)
assert(false)
return AlertInternalError
}
return AlertNoAlert
}
func (c *Conn) HandshakeSetup() Alert {
var state HandshakeState
var actions []HandshakeAction
var alert Alert
if err := c.config.Init(c.isClient); err != nil {
logf(logTypeHandshake, "Error initializing config: %v", err)
return AlertInternalError
}
opts := ConnectionOptions{
ServerName: c.config.ServerName,
NextProtos: c.config.NextProtos,
}
if c.isClient {
state, actions, alert = clientStateStart{Config: c.config, Opts: opts, hsCtx: c.hsCtx}.Next(nil)
if alert != AlertNoAlert {
logf(logTypeHandshake, "Error initializing client state: %v", alert)
return alert
}
for _, action := range actions {
alert = c.takeAction(action)
if alert != AlertNoAlert {
logf(logTypeHandshake, "Error during handshake actions: %v", alert)
return alert
}
}
} else {
if c.config.RequireCookie && c.config.CookieProtector == nil {
logf(logTypeHandshake, "RequireCookie set, but no CookieProtector provided. Using default cookie protector. Stateless Retry not possible.")
if c.config.NonBlocking {
logf(logTypeHandshake, "Not possible in non-blocking mode.")
return AlertInternalError
}
var err error
c.config.CookieProtector, err = NewDefaultCookieProtector()
if err != nil {
logf(logTypeHandshake, "Error initializing cookie source: %v", alert)
return AlertInternalError
}
}
state = serverStateStart{Config: c.config, conn: c, hsCtx: c.hsCtx}
}
c.hState = state
return AlertNoAlert
}
type handshakeMessageReader interface {
ReadMessage() (*HandshakeMessage, Alert)
}
type handshakeMessageReaderImpl struct {
hsCtx *HandshakeContext
}
var _ handshakeMessageReader = &handshakeMessageReaderImpl{}
func (r *handshakeMessageReaderImpl) ReadMessage() (*HandshakeMessage, Alert) {
var hm *HandshakeMessage
var err error
for {
hm, err = r.hsCtx.hIn.ReadMessage()
if err == AlertWouldBlock {
return nil, AlertWouldBlock
}
if err != nil {
logf(logTypeHandshake, "Error reading message: %v", err)
return nil, AlertCloseNotify
}
if hm != nil {
break
}
}
return hm, AlertNoAlert
}
// Handshake causes a TLS handshake on the connection. The `isClient` member
// determines whether a client or server handshake is performed. If a
// handshake has already been performed, then its result will be returned.
func (c *Conn) Handshake() Alert {
label := "[server]"
if c.isClient {
label = "[client]"
}
// TODO Lock handshakeMutex
// TODO Remove CloseNotify hack
if c.handshakeAlert != AlertNoAlert && c.handshakeAlert != AlertCloseNotify {
logf(logTypeHandshake, "Pre-existing handshake error: %v", c.handshakeAlert)
return c.handshakeAlert
}
if c.handshakeComplete {
return AlertNoAlert
}
if c.hState == nil {
logf(logTypeHandshake, "%s First time through handshake (or after stateless retry), setting up", label)
alert := c.HandshakeSetup()
if alert != AlertNoAlert || (c.isClient && c.config.NonBlocking) {
return alert
}
}
logf(logTypeHandshake, "(Re-)entering handshake, state=%v", c.hState)
state := c.hState
_, connected := state.(stateConnected)
hmr := &handshakeMessageReaderImpl{hsCtx: c.hsCtx}
for !connected {
var alert Alert
var actions []HandshakeAction
// Advance the state machine
state, actions, alert = state.Next(hmr)
if alert == AlertWouldBlock {
logf(logTypeHandshake, "%s Would block reading message: %s", label, alert)
// If we blocked, then run our timers to see if any have expired.
if c.hsCtx.hIn.datagram {
if err := c.hsCtx.timers.check(time.Now()); err != nil {
return AlertInternalError
}
}
return AlertWouldBlock
}
if alert == AlertCloseNotify {
logf(logTypeHandshake, "%s Error reading message: %s", label, alert)
c.sendAlert(AlertCloseNotify)
return AlertCloseNotify
}
if alert != AlertNoAlert && alert != AlertStatelessRetry {
logf(logTypeHandshake, "Error in state transition: %v", alert)
return alert
}
for index, action := range actions {
logf(logTypeHandshake, "%s taking next action (%d)", label, index)
if alert := c.takeAction(action); alert != AlertNoAlert {
logf(logTypeHandshake, "Error during handshake actions: %v", alert)
c.sendAlert(alert)
return alert
}
}
c.hState = state
logf(logTypeHandshake, "state is now %s", c.GetHsState())
_, connected = state.(stateConnected)
if connected {
c.state = state.(stateConnected)
c.handshakeComplete = true
if !c.isClient {
// Send NewSessionTicket if configured to
if c.config.SendSessionTickets {
actions, alert := c.state.NewSessionTicket(
c.config.TicketLen,
c.config.TicketLifetime,
c.config.EarlyDataLifetime)
for _, action := range actions {
alert = c.takeAction(action)
if alert != AlertNoAlert {
logf(logTypeHandshake, "Error during handshake actions: %v", alert)
c.sendAlert(alert)
return alert
}
}
}
// If there is early data, move it into the main buffer
if c.hsCtx.earlyData != nil {
c.readBuffer = c.hsCtx.earlyData
c.hsCtx.earlyData = nil
}
} else {
assert(c.hsCtx.earlyData == nil)
}
}
if c.config.NonBlocking {
if alert == AlertStatelessRetry {
return AlertStatelessRetry
}
return AlertNoAlert
}
}
return AlertNoAlert
}
func (c *Conn) SendKeyUpdate(requestUpdate bool) error {
if !c.handshakeComplete {
return fmt.Errorf("Cannot update keys until after handshake")
}
request := KeyUpdateNotRequested
if requestUpdate {
request = KeyUpdateRequested
}
// Create the key update and update state
actions, alert := c.state.KeyUpdate(request)
if alert != AlertNoAlert {
c.sendAlert(alert)
return fmt.Errorf("Alert while generating key update: %v", alert)
}
// Take actions (send key update and rekey)
for _, action := range actions {
alert = c.takeAction(action)
if alert != AlertNoAlert {
c.sendAlert(alert)
return fmt.Errorf("Alert during key update actions: %v", alert)
}
}
return nil
}
func (c *Conn) GetHsState() State {
if c.hState == nil {
return StateInit
}
return c.hState.State()
}
func (c *Conn) ComputeExporter(label string, context []byte, keyLength int) ([]byte, error) {
_, connected := c.hState.(stateConnected)
if !connected {
return nil, fmt.Errorf("Cannot compute exporter when state is not connected")
}
if c.state.exporterSecret == nil {
return nil, fmt.Errorf("Internal error: no exporter secret")
}
h0 := c.state.cryptoParams.Hash.New().Sum(nil)
tmpSecret := deriveSecret(c.state.cryptoParams, c.state.exporterSecret, label, h0)
hc := c.state.cryptoParams.Hash.New().Sum(context)
return HkdfExpandLabel(c.state.cryptoParams.Hash, tmpSecret, "exporter", hc, keyLength), nil
}
func (c *Conn) ConnectionState() ConnectionState {
state := ConnectionState{
HandshakeState: c.GetHsState(),
}
if c.handshakeComplete {
state.CipherSuite = cipherSuiteMap[c.state.Params.CipherSuite]
state.NextProto = c.state.Params.NextProto
state.VerifiedChains = c.state.verifiedChains
state.PeerCertificates = c.state.peerCertificates
state.UsingPSK = c.state.Params.UsingPSK
state.UsingEarlyData = c.state.Params.UsingEarlyData
}
return state
}
func (c *Conn) Writable() bool {
// If we're connected, we're writable.
if _, connected := c.hState.(stateConnected); connected {
return true
}
// If we're a client in 0-RTT, then we're writable.
if c.isClient && c.out.Epoch() == EpochEarlyData {
return true
}
return false
}
func (c *Conn) label() string {
if c.isClient {
return "client"
}
return "server"
}