-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathwln_reaction_center.py
183 lines (159 loc) · 7.29 KB
/
wln_reaction_center.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Weisfeiler-Lehman Network (WLN) for Reaction Center Prediction.
# pylint: disable= no-member, arguments-differ, invalid-name
import dgl.function as fn
import torch
import torch.nn as nn
from ..gnn.wln import WLNLinear, WLN
__all__ = ['WLNReactionCenter']
# pylint: disable=W0221, E1101
class WLNContext(nn.Module):
"""Attention-based context computation for each node.
A context vector is computed by taking a weighted sum of node representations,
with weights computed from an attention module.
Parameters
----------
node_in_feats : int
Size for the input node features.
node_pair_in_feats : int
Size for the input features of node pairs.
"""
def __init__(self, node_in_feats, node_pair_in_feats):
super(WLNContext, self).__init__()
self.project_feature_sum = WLNLinear(node_in_feats, node_in_feats, bias=False)
self.project_node_pair_feature = WLNLinear(node_pair_in_feats, node_in_feats)
self.compute_attention = nn.Sequential(
nn.ReLU(),
WLNLinear(node_in_feats, 1),
nn.Sigmoid()
)
def forward(self, batch_complete_graphs, node_feats, feat_sum, node_pair_feat):
"""Compute context vectors for each node.
Parameters
----------
batch_complete_graphs : DGLGraph
A batch of fully connected graphs.
node_feats : float32 tensor of shape (V, node_in_feats)
Input node features. V for the number of nodes.
feat_sum : float32 tensor of shape (E_full, node_in_feats)
Sum of node_feats between each pair of nodes. E_full for the number of
edges in the batch of complete graphs.
node_pair_feat : float32 tensor of shape (E_full, node_pair_in_feats)
Input features for each pair of nodes. E_full for the number of edges in
the batch of complete graphs.
Returns
-------
node_contexts : float32 tensor of shape (V, node_in_feats)
Context vectors for nodes.
"""
with batch_complete_graphs.local_scope():
batch_complete_graphs.ndata['hv'] = node_feats
batch_complete_graphs.edata['a'] = self.compute_attention(
self.project_feature_sum(feat_sum) + \
self.project_node_pair_feature(node_pair_feat)
)
batch_complete_graphs.update_all(
fn.u_mul_e('hv', 'a', 'm'), fn.sum('m', 'context'))
node_contexts = batch_complete_graphs.ndata.pop('context')
return node_contexts
class WLNReactionCenter(nn.Module):
r"""Weisfeiler-Lehman Network (WLN) for Reaction Center Prediction.
The model is introduced in `Predicting Organic Reaction Outcomes with
Weisfeiler-Lehman Network <https://arxiv.org/abs/1709.04555>`__.
The model uses WLN to update atom representations and then predicts the
score for each pair of atoms to form a bond.
Parameters
----------
node_in_feats : int
Size for the input node features.
edge_in_feats : int
Size for the input edge features.
node_out_feats : int
Size for the output node representations. Default to 300.
node_pair_in_feats : int
Size for the input features of node pairs.
n_layers : int
Number of times for message passing. Note that same parameters
are shared across n_layers message passing. Default to 3.
n_tasks : int
Number of tasks for prediction.
"""
def __init__(self,
node_in_feats,
edge_in_feats,
node_pair_in_feats,
node_out_feats=300,
n_layers=3,
n_tasks=5):
super(WLNReactionCenter, self).__init__()
self.gnn = WLN(node_in_feats=node_in_feats,
edge_in_feats=edge_in_feats,
node_out_feats=node_out_feats,
n_layers=n_layers)
self.context_module = WLNContext(node_in_feats=node_out_feats,
node_pair_in_feats=node_pair_in_feats)
self.project_feature_sum = WLNLinear(node_out_feats, node_out_feats, bias=False)
self.project_node_pair_feature = WLNLinear(node_pair_in_feats, node_out_feats, bias=False)
self.project_context_sum = WLNLinear(node_out_feats, node_out_feats)
self.predict = nn.Sequential(
nn.ReLU(),
WLNLinear(node_out_feats, n_tasks)
)
def forward(self, batch_mol_graphs, batch_complete_graphs,
node_feats, edge_feats, node_pair_feats):
r"""Predict score for each pair of nodes.
Parameters
----------
batch_mol_graphs : DGLGraph
A batch of molecular graphs.
batch_complete_graphs : DGLGraph
A batch of fully connected graphs.
node_feats : float32 tensor of shape (V, node_in_feats)
Input node features. V for the number of nodes.
edge_feats : float32 tensor of shape (E, edge_in_feats)
Input edge features. E for the number of edges.
node_pair_feats : float32 tensor of shape (E_full, node_pair_in_feats)
Input features for each pair of nodes. E_full for the number of edges in
the batch of complete graphs.
Returns
-------
scores : float32 tensor of shape (E_full, 5)
Predicted scores for each pair of atoms to perform one of the following
5 actions in reaction:
* The bond between them gets broken
* Forming a single bond
* Forming a double bond
* Forming a triple bond
* Forming an aromatic bond
biased_scores : float32 tensor of shape (E_full, 5)
Comparing to scores, a bias is added if the pair is for a same atom.
"""
node_feats = self.gnn(batch_mol_graphs, node_feats, edge_feats)
# Compute context vectors for all atoms, which are weighted sum of atom
# representations in all reactants.
with batch_complete_graphs.local_scope():
batch_complete_graphs.ndata['hv'] = node_feats
batch_complete_graphs.apply_edges(fn.u_add_v('hv', 'hv', 'feature_sum'))
feat_sum = batch_complete_graphs.edata.pop('feature_sum')
node_contexts = self.context_module(batch_complete_graphs, node_feats,
feat_sum, node_pair_feats)
# Predict score
with batch_complete_graphs.local_scope():
batch_complete_graphs.ndata['context'] = node_contexts
batch_complete_graphs.apply_edges(fn.u_add_v('context', 'context', 'context_sum'))
scores = self.predict(
self.project_feature_sum(feat_sum) + \
self.project_node_pair_feature(node_pair_feats) + \
self.project_context_sum(batch_complete_graphs.edata['context_sum'])
)
# Masking self loops
nodes = batch_complete_graphs.nodes()
e_ids = batch_complete_graphs.edge_ids(nodes, nodes)
bias = torch.zeros(scores.shape[0], 5).to(scores.device)
bias[e_ids.long(), :] = 1e4
biased_scores = scores - bias
return scores, biased_scores