-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo.py
204 lines (164 loc) · 6.3 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
import matplotlib.pyplot as plt
import cv2
import os
from keras import backend as K
from tqdm.keras import TqdmCallback
from scipy.stats import spearmanr
from tensorflow.keras import Input
from tensorflow.keras import optimizers
from tensorflow.keras import models
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from tensorflow.keras.models import Model
from statistics import mean
from sklearn.utils import shuffle
from tensorflow import keras
from tensorflow.keras.optimizers import Adam
import pandas as pd
import datetime
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau ,Callback,TensorBoard
from keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras import applications
import PIL
from keras.activations import softmax,sigmoid
import h5py
from PIL import Image
from keras.layers import Layer
from scipy.stats import spearmanr,pearsonr
import sklearn
import tensorflow as tf
from tensorflow.keras.layers import MaxPooling2D ,Dense,Concatenate ,Dropout ,Input,concatenate,Conv2D,Reshape,GlobalMaxPooling2D,Flatten,GlobalAveragePooling2D,AveragePooling2D,Lambda,MaxPooling2D,TimeDistributed, Bidirectional, LSTM
import argparse
import random
from tqdm import tqdm
import time
from scipy.optimize import curve_fit
tf.keras.backend.clear_session()
start_time = time.time()
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
# 4-parameter logistic function
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
def data_generator_1(data, nb, batch_size=1):
num_samples = len(data)
while True:
for offset in range(0, num_samples, batch_size ):
# Get the samples you'll use in this batch
batch_samples = data[offset:offset+batch_size]
X_train = np.zeros((batch_size, nb,25,2048))
y_train = np.zeros((batch_size,1))
for i in range(batch_size):
X_train[i,:,:,:] = np.load(batch_samples[i][0])
y_train[i,:] = np.load(batch_samples[i][1])
yield X_train
def data_generator_2(data, nb ,batch_size=1):
num_samples = len(data)
while True:
for offset in range(0, num_samples, batch_size):
# Get the samples you'll use in this batch
batch_samples = data[offset:offset+batch_size]
X_train = np.zeros((batch_size, nb,25,2048))
y_train = np.zeros((batch_size,1))
for i in range(batch_size):
X_train[i,:,:,:] = np.load(batch_samples[i][0])
y_train[i,:] = np.load(batch_samples[i][1])
yield y_train
def build_model(batch_shape, model_final):
model = models.Sequential()
model.add(TimeDistributed(model_final,input_shape = batch_shape))
model.add(Bidirectional(LSTM(64,return_sequences=True,kernel_initializer='random_normal',
recurrent_initializer='random_normal',
dropout=0.4,recurrent_dropout=0)))
model.add(Bidirectional(LSTM(64,return_sequences=True,
kernel_initializer='random_normal',
recurrent_initializer='random_normal', dropout=0.4,recurrent_dropout=0)))
model.add(Flatten())
model.add(Dense(256,activation='relu', kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001)))
model.add(layers.Dropout(rate=0.5))
model.add(layers.Dense(1))
model.add(layers.Activation('linear'))
model.compile(optimizer=optimizers.Adam(),loss='mse',metrics=['mae'])
model.summary()
return model
def data_prepare():
x = os.listdir('./features_X/')
li = []
for i in range(len(x)):
tem = []
x_f = './features_X/' + x[i]
y_f = './features_y/' + x[i]
tem.append(x_f)
tem.append(y_f)
li.append(tem)
li.sort()
return (li)
if __name__ == '__main__':
parser = argparse.ArgumentParser("Demo")
parser.add_argument('-nf',
'--num_frames',
default=30,
type=int,
help='Number of cropped frames per video.'
)
parser.add_argument('-m',
'--pretrained_model',
default='',
type=str,
help='path to pretrained End2End module.'
)
parser.add_argument('-f',
'--paths',
default='',
type=str,
help='path to videos features.'
)
args = parser.parse_args()
model_sp = './models/res-bi-sp_koniq.h5'
nb = args.num_frames
model_end = args.pretrained_model
paths = args.paths
model = load_model(model_sp)
model_final = Model(inputs=model.input,outputs=model.layers[-3].output )
model = build_model((nb,25,2048), model_final)
model.load_weights(model_end)
test_l = data_prepare()
test_gen = data_generator_1(test_l,nb)
s_gen = data_generator_2(test_l,nb)
y_p = model.predict(test_gen, steps = int(len(test_l)))
y_ss = []
for i in range(len(test_l)):
y = next(s_gen)
y_ss.append(y)
y_ss = np.array(y_ss)
y_ss = y_ss.reshape(len(test_l),1)
srocc = spearmanr(y_ss,y_p).correlation
y_p = np.reshape(y_p,(len(test_l)))
y_p = y_p * 5
y_ss = np.reshape(y_ss,(len(test_l)))
names = []
for i in range(len(test_l)):
a = test_l[i][0].split('/')[-1]
a = a.split('.npy')[0]
names.append(a)
y_ss_l = y_ss.tolist()
y_p_l = y_p.tolist()
df = pd.DataFrame(list(zip(names, y_ss_l,y_p_l)),
columns =['Name', 'MOS', 'Predicted MOS'])
df.to_csv('results.csv', index=False)
beta_init = [np.max(y_ss), np.min(y_ss), np.mean(y_p), 0.5]
popt, _ = curve_fit(logistic_func, y_p, y_ss, p0=beta_init, maxfev=int(1e8))
y_pred_logistic = logistic_func(y_p, *popt)
plcc = stats.pearsonr(y_ss,y_pred_logistic)[0]
rmse = np.sqrt(mean_squared_error(y_ss,y_pred_logistic))
try:
KRCC = scipy.stats.kendalltau(y_ss, y_p)[0]
except:
KRCC = scipy.stats.kendalltau(y_ss, y_p, method='asymptotic')[0]
rmse = np.sqrt(mean_squared_error(y_ss,y_pred_logistic))
print('srocc = ', srocc )
print('plcc = ' , plcc)
print( 'rmse = ', rmse)
print('krocc = ', KRCC)