forked from jainaman224/Algo_Ds_Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Ford_Fulkerson_Method.java
130 lines (104 loc) · 3.67 KB
/
Ford_Fulkerson_Method.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
//JAVA program for implementation of Ford Fulkerson algorithm
// code courtesy Geeksforgeeks.org
import java.util.LinkedList;
class Ford_Fulkerson_Method {
//Number of vertices in graph
static final int V = 6;
/* Returns true if there is a path from source 's' to sink
't' in residual graph. Also fills parent[] to store the
path */
boolean bfs(int rGraph[][], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as not
// visited
boolean visited[] = new boolean[V];
for(int i=0; i<V; ++i)
visited[i]=false;
// Create a queue, enqueue source vertex and mark
// source vertex as visited
LinkedList<Integer> queue = new LinkedList<Integer>();
queue.add(s);
visited[s] = true;
parent[s]=-1;
// Standard BFS Loop
while (queue.size()!=0)
{
int u = queue.poll();
for (int v=0; v<V; v++)
{
if (visited[v]==false && rGraph[u][v] > 0)
{
queue.add(v);
parent[v] = u;
visited[v] = true;
}
}
}
// If we reached sink in BFS starting from source, then
// return true, else false
return (visited[t] == true);
}
//Returns tne maximum flow from s to t in the given graph
int fordFulkerson(int graph[][], int s, int t)
{
int u, v;
// Create a residual graph and fill the residual graph
// with given capacities in the original graph as
// residual capacities in residual graph
// Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is
// not)
int rGraph[][] = new int[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
// This array is filled by BFS and to store path
int parent[] = new int[V];
int max_flow = 0; // There is no flow initially
// Augment the flow while tere is path from source
// to sink
while (bfs(rGraph, s, t, parent))
{
// Find minimum residual capacity of the edhes
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = Integer.MAX_VALUE;
for (v=t; v!=s; v=parent[v])
{
u = parent[v];
path_flow = Math.min(path_flow, rGraph[u][v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v=t; v != s; v=parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver program to test above functions
public static void main (String[] args) throws java.lang.Exception
{
// Let us create a graph shown in the above example
int graph[][] =new int[][] { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
Ford_Fulkerson_Method m = new Ford_Fulkerson_Method();
System.out.println("The maximum possible flow is " +
m.fordFulkerson(graph, 0, 5));
}
}
/* Output
The maximum possible flow is 23
*/