-
Notifications
You must be signed in to change notification settings - Fork 28
/
los_angeles_music_composer_ttm_edition.py
388 lines (271 loc) · 10.1 KB
/
los_angeles_music_composer_ttm_edition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# -*- coding: utf-8 -*-
"""Los_Angeles_Music_Composer_TTM_Edition.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/github/asigalov61/Los-Angeles-Music-Composer/blob/main/Los_Angeles_Music_Composer_TTM_Edition.ipynb
# Los Angeles Music Composer TTM Edition (ver. 4.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2023
***
# (GPU CHECK)
"""
#@title NVIDIA GPU check
!nvidia-smi
"""# (SETUP ENVIRONMENT)"""
#@title Install dependencies
!git clone --depth 1 https://github.com/asigalov61/Los-Angeles-Music-Composer
!pip install torch
!pip install einops
!pip install fuzzywuzzy[speedup]
!pip install torch-summary
!pip install tqdm
!pip install matplotlib
!apt install fluidsynth #Pip does not work for some reason. Only apt works
!pip install midi2audio
# Commented out IPython magic to ensure Python compatibility.
#@title Import modules
print('=' * 70)
print('Loading core Los Angeles Music Composer modules...')
import os
import pickle
import random
import secrets
import statistics
from time import time
import tqdm
print('=' * 70)
print('Loading main Los Angeles Music Composer modules...')
import torch
# %cd /content/Los-Angeles-Music-Composer
import TMIDIX
from lwa_transformer import *
# %cd /content/
from fuzzywuzzy import process
print('=' * 70)
print('Loading aux Los Angeles Music Composer modeules...')
import matplotlib.pyplot as plt
from torchsummary import summary
from sklearn import metrics
from midi2audio import FluidSynth
from IPython.display import Audio, display
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
"""# (LOAD MODEL)"""
# Commented out IPython magic to ensure Python compatibility.
#@title Unzip Pre-Trained Los Angeles Music Composer Model
print('=' * 70)
# %cd /content/Los-Angeles-Music-Composer/Model
print('=' * 70)
print('Unzipping pre-trained Los Angeles Music Composer model...Please wait...')
!cat /content/Los-Angeles-Music-Composer/Model/Los_Angeles_Music_Composer_Trained_Model.zip* > /content/Los-Angeles-Music-Composer/Model/Los_Angeles_Music_Composer_Trained_Model.zip
print('=' * 70)
!unzip -j /content/Los-Angeles-Music-Composer/Model/Los_Angeles_Music_Composer_Trained_Model.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
print('=' * 70)
#@title Load Los Angeles Music Composer Model
full_path_to_model_checkpoint = "/content/Los-Angeles-Music-Composer/Model/Los_Angeles_Music_Composer_Model_88835_steps_0.643_loss.pth" #@param {type:"string"}
#@markdown Model precision option
model_precision = "bfloat16" # @param ["bfloat16", "float16", "float32"]
#@markdown bfloat16 == Third precision/triple speed (if supported, otherwise the model will default to float16)
#@markdown float16 == Half precision/double speed
#@markdown float32 == Full precision/normal speed
plot_tokens_embeddings = False # @param {type:"boolean"}
print('=' * 70)
print('Loading Los Angeles Music Composer Pre-Trained Model...')
print('Please wait...')
print('=' * 70)
print('Instantiating model...')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda'
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
dtype = 'bfloat16'
else:
dtype = 'float16'
if model_precision == 'float16':
dtype = 'float16'
if model_precision == 'float32':
dtype = 'float32'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 4096
# instantiate the model
model = LocalTransformer(
num_tokens = 2831,
dim = 1024,
depth = 36,
causal = True,
local_attn_window_size = 512,
max_seq_len = SEQ_LEN
)
model = torch.nn.DataParallel(model)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(full_path_to_model_checkpoint))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
# Model stats
print('Model summary...')
summary(model)
# Plot Token Embeddings
if plot_tokens_embeddings:
tok_emb = model.module.token_emb.weight.detach().cpu().tolist()
cos_sim = metrics.pairwise_distances(
tok_emb, metric='cosine'
)
plt.figure(figsize=(7, 7))
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
plt.savefig("/content/Los-Angeles-Music-Composer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
"""# (LOAD AUX DATA)"""
# Commented out IPython magic to ensure Python compatibility.
#@title Unzip Los Angeles Music Composer Aux Data
print('=' * 70)
# %cd /content/Los-Angeles-Music-Composer/Aux-Data
print('=' * 70)
print('Unzipping Los Angeles Music Composer Aux Data...Please wait...')
!cat /content/Los-Angeles-Music-Composer/Aux-Data/Los_Angeles_Music_Composer_Aux_Data.zip* > /content/Los-Angeles-Music-Composer/Aux-Data/Los_Angeles_Music_Composer_Aux_Data.zip
print('=' * 70)
!unzip -j /content/Los-Angeles-Music-Composer/Aux-Data/Los_Angeles_Music_Composer_Aux_Data.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
print('=' * 70)
#@title Load Los Angeles Music Composer Aux Data
AUX_DATA = TMIDIX.Tegridy_Any_Pickle_File_Reader('/content/Los-Angeles-Music-Composer/Aux-Data/Los_Angeles_Music_Composer_Aux_Data')
print('Done!')
"""# (GENERATE)"""
#@title Standard/Simple Continuation
#@markdown Text-To-Music Settings
#@markdown NOTE: You can enter any desired title or artist, or both
enter_desired_song_title = "Family Guy" #@param {type:"string"}
enter_desired_artist = "TV Themes" #@param {type:"string"}
#@markdown Generation Settings
number_of_tokens_to_generate = 512 #@param {type:"slider", min:32, max:2048, step:32}
number_of_batches_to_generate = 4 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 #@param {type:"slider", min:0.1, max:1, step:0.1}
allow_model_to_stop_generation_if_needed = False #@param {type:"boolean"}
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Los Angeles Music Composer TTM Model Generator')
print('=' * 70)
print('Searching titles...Please wait...')
random.shuffle(AUX_DATA)
titles_index = []
for A in AUX_DATA:
titles_index.append(A[0])
search_string = ''
if enter_desired_song_title != '' and enter_desired_artist != '':
search_string = enter_desired_song_title + ' --- ' + enter_desired_artist
else:
search_string = enter_desired_song_title + enter_desired_artist
search_match = process.extract(query=search_string, choices=titles_index, limit=1)
search_index = titles_index.index(search_match[0][0])
print('Done!')
print('=' * 70)
print('Selected title:', AUX_DATA[search_index][0])
print('=' * 70)
if allow_model_to_stop_generation_if_needed:
min_stop_token = 2816
else:
min_stop_token = 0
outy = AUX_DATA[search_index][1]
block_marker = sum([(y * 10) for y in outy if y < 128]) / 1000
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.module.generate(inp,
number_of_tokens_to_generate,
temperature=temperature,
return_prime=True,
min_stop_token=min_stop_token,
verbose=True)
out0 = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
#======================================================================
print('Rendering results...')
for i in range(number_of_batches_to_generate):
print('=' * 70)
print('Batch #', i)
print('=' * 70)
out1 = out0[i]
print('Sample INTs', out1[:12])
print('=' * 70)
if len(out) != 0:
song = out1
song_f = []
tim = 0
dur = 0
vel = 0
pitch = 0
channel = 0
son = []
song1 = []
for s in song:
if s >= 128 and s < (12*128)+1152:
son.append(s)
else:
if len(son) == 3:
song1.append(son)
son = []
son.append(s)
for ss in song1:
tim += ss[0] * 10
dur = ((ss[1]-128) // 8) * 20
vel = (((ss[1]-128) % 8)+1) * 15
channel = (ss[2]-1152) // 128
pitch = (ss[2]-1152) % 128
song_f.append(['note', tim, dur, channel, pitch, vel ])
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Los Angeles Music Composer',
output_file_name = '/content/Los-Angeles-Music-Composer-Music-Composition_'+str(i),
track_name='Project Los Angeles',
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Los-Angeles-Music-Composer-Music-Composition_'+str(i)
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
ax.axvline(x=block_marker, c='w')
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
"""# Congrats! You did it! :)"""