forked from BosingerLab/RM_Baricitinib_manuscript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSingle-Cell_BAL_Integrated_Analysis_Script.R
930 lines (696 loc) · 33.2 KB
/
Single-Cell_BAL_Integrated_Analysis_Script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
setwd("Set Data Path here")
"Load all libraries for Analysis"
library(stringr)
library(Seurat)
library(ggplot2)
library(SingleR)
library(tidyverse)
library(gridExtra)
library(cowplot)
library(DoubletFinder)
library(plotly)
library(ggExtra)
library(kableExtra)
library(knitr)
"Set the Data path "
data_path <- "Input Data Path here"
mtgenes= as.character(unlist(read.table("MT_genes.txt"),
use.names = F))
dirs <- list.dirs(data_path, recursive = FALSE)
dirs <- dirs[grepl("GEX_count_Mmul10$", dirs)]
dirs
path <- paste0(dirs,"/outs/raw_feature_bc_matrix.h5")
createobj <- function(obj,file){
s <- gsub("_GEX_count_Mmul10","",str_split_fixed(obj,"BAL/",2))[,2]
obj <- CreateSeuratObject(counts=Read10X_h5(file),project=s)
}
list_obj <- mapply(dirs,FUN=createobj,path)
BAL_merge <- merge(list_obj[[1]], y=list_obj[2:length(list_obj)],
add.cell.ids=c("RLF10_Baseline_Treated","Sample5215_Baseline_Untreated",
"RQv9_Baseline_Untreated","Sample5215_Day4_Untreated",
"RLF10_Day4_Treated","RQv9_Day4_Untreated",
"RVf12_Baseline_Treated","RHz12_Baseline_Untreated",
"RVf12_Day4_Treated","RHz12_Day4_Untreated",
"RHz12_Necropsy_Untreated"))
head([email protected], 5)
tail([email protected], 5)
BAL_merge$Sample <- str_match(row.names([email protected]),
"[[:alnum:]]+_[[:alnum:]]+_[[:alnum:]]+")
table(BAL_merge$Sample)
head([email protected], 13)
[email protected] <- [email protected] %>% separate(Sample,c("Sample","Day","Type"),"_",
remove = FALSE)
BAL_merge[["percent.hbb"]] = PercentageFeatureSet(BAL_merge, pattern = "^HBB")
BAL_merge[["percent.rps"]] = PercentageFeatureSet(BAL_merge, pattern = "^RPS")
BAL_merge[["percent.rpl"]] = PercentageFeatureSet(BAL_merge, pattern = "^RPL")
BAL_merge[["percent.mt"]] = PercentageFeatureSet(BAL_merge, features = mtgenes)
BAL_merge$log10GenesPerUMI <- log10(BAL_merge$nFeature_RNA) / log10(BAL_merge$nCount_RNA)
metadata_merged = [email protected]
filtered_merged_seurat <- subset(x = BAL_merge,
subset= (nFeature_RNA >= 500) & (nFeature_RNA <=3500) &
(nCount_RNA >= 250) & (log10GenesPerUMI >= 0.8)
& (percent.hbb < 10) &
(percent.mt < 10) & (percent.rps < 10) & (percent.rpl < 10))
filtered_merged_seurat$Sample_name = paste0([email protected]$Sample,
"_", [email protected]$Day,"_",
filtered_merged_seurat$Type)
Idents(filtered_merged_seurat) <- filtered_merged_seurat$Sample_name
#Testing ggscatterplot with density plot
pdf("BALs_Merged_VlnPlot.pdf", width =40, height =5)
VlnPlot(object = filtered_merged_seurat, features = c("nFeature_RNA", "nCount_RNA",
"log10GenesPerUMI","percent.hbb",
"percent.mt", "percent.rps",
"percent.rpl","precent.HTO"), ncol = 7)
dev.off()
##----------Gene Level Filtering------------##
"Output a logical vector for every gene on whether
the more than zero counts per cell Extract counts"
counts <- GetAssayData(object = filtered_merged_seurat, slot = "counts")
"Output a logical vector for
every gene on whether the more than zero counts per cell"
nonzero <- counts > 0
"Sums all TRUE values and
returns TRUE if more than 10 TRUE values per gene"
keep_genes <- Matrix::rowSums(nonzero) >= 10
"Only keeping those genes
expressed in more than 10 cells"
filtered_counts <- counts[keep_genes, ]
"Reassign to filtered Seurat object"
filtered_merged_seurat <- CreateSeuratObject(filtered_counts,
meta.data = [email protected])
metadata_clean_merged = [email protected]
##----------End of this Block-------------##
##----------VISUALIZATION-----------------##
" Visualize the number UMIs/transcripts per cell (Unfiltered)"
a = metadata_merged %>%
ggplot(aes(color=orig.ident, x=nFeature_RNA, fill= orig.ident)) +
geom_density(alpha = 0.2) +
scale_x_log10() +
theme_classic() +
ylab("Cell density") +
geom_vline(xintercept = 150)+
ggtitle("Unfiltered")
"Visualize the number UMIs/transcripts per cell (Filtered)"
b = metadata_clean_merged %>%
ggplot(aes(color=orig.ident, x=nFeature_RNA, fill= orig.ident)) +
geom_density(alpha = 0.2) +
scale_x_log10() +
theme_classic() +
ylab("Cell density") +
geom_vline(xintercept = 500)+
ggtitle("Filtered")
"Visualize the distribution of genes detected per cell via histogram (Unfiltered)"
c = metadata_merged %>%
ggplot(aes(color=orig.ident, x=nCount_RNA, fill= orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
geom_vline(xintercept = 200)+
ggtitle("Unfiltered")
"Visualize the distribution of genes detected per cell via histogram (filtered)"
d = metadata_clean_merged %>%
ggplot(aes(color=orig.ident, x=nCount_RNA, fill= orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
scale_x_log10() +
geom_vline(xintercept = 700)+
ggtitle("Filtered")
"Visualize the distribution of genes detected per cell via boxplot (Unfiltered)"
e = metadata_merged %>%
ggplot(aes(x=orig.ident, y=log10(nCount_RNA), fill=orig.ident)) +
geom_boxplot() +
theme_classic() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
theme(plot.title = element_text(hjust=0.5, face="bold")) +
ggtitle("NCells vs NGenes (Unfiltered)")
"Visualize the distribution of genes detected per cell via boxplot (filtered)"
f = metadata_clean_merged %>%
ggplot(aes(x=orig.ident, y=log10(nCount_RNA), fill=orig.ident)) +
geom_boxplot() +
theme_classic() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
theme(plot.title = element_text(hjust=0.5, face="bold")) +
ggtitle("NCells vs NGenes (Filtered)")
"Visualize the overall complexity of the gene expression
by visualizing the genes detected per UMI (Unfiltered)"
g = metadata_merged %>%
ggplot(aes(x=log10GenesPerUMI, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.8)+
ggtitle("Unfiltered")
"Visualize the overall complexity of the
gene expression by visualizing the genes detected per UMI (filtered)"
h = metadata_clean_merged %>%
ggplot(aes(x=log10GenesPerUMI, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.8)+
ggtitle("Filtered")
"Visualize the percent hbb (unfiltered)"
i = metadata_merged %>%
ggplot(aes(x=percent.hbb, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Unfiltered")
"Visualize the percent hbb (filtered)"
j = metadata_clean_merged %>%
ggplot(aes(x=percent.hbb, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Filtered")
"Visualize the percent mt (unfiltered)"
k = metadata_merged %>%
ggplot(aes(x=percent.mt, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Unfiltered")
"Visualize the percent mt (unfiltered)"
l = metadata_clean_merged %>%
ggplot(aes(x=percent.mt, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Filtered")
"Visualize the percent rps (unfiltered)"
m = metadata_merged %>%
ggplot(aes(x=percent.rps, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Unfiltered")
" Visualize the percent rps (filtered)"
n = metadata_clean_merged %>%
ggplot(aes(x=percent.rps, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Filtered")
"Visualize the percent rpl (unfiltered)"
o = metadata_merged %>%
ggplot(aes(x=percent.rpl, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Unfiltered")
"Visualize the percent rpl (filtered)"
p = metadata_clean_merged %>%
ggplot(aes(x=percent.rpl, color = orig.ident, fill=orig.ident)) +
geom_density(alpha = 0.2) +
theme_classic() +
geom_vline(xintercept = 0.1)+
ggtitle("Filtered")
pdf(paste0("/Merged_BALs","_","InitialQC_Unfiltered_vs_Filtered.pdf"),
width = 20, height = 30)
plot_grid(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p, nrow = 8 )
dev.off()
##----------End of this Block-------------##
##----------Perform Doublet detection and removal-------------##
"Split By Sample"
BAL.list_0 <- SplitObject(filtered_merged_seurat, split.by = "Sample_name")
for (i in names(BAL.list_0)) {
#normalization
BAL.list_0[[i]] <- NormalizeData(BAL.list_0[[i]])
BAL.list_0[[i]] <- FindVariableFeatures(BAL.list_0[[i]], selection.method = "vst",
nfeatures = 3500)
BAL.list_0[[i]] <- ScaleData(BAL.list_0[[i]])
BAL.list_0[[i]] <- RunPCA(BAL.list_0[[i]])
BAL.list_0[[i]] <- RunUMAP(BAL.list_0[[i]], dims = 1:30)
sweep.res.list_Bal <- paramSweep_v3(BAL.list_0[[i]], PCs = 1:30, sct = F)
#gt.calls = [email protected][rownames(sweep_RLF10[[1]]), "GT"]
sweep.stats_bal <- summarizeSweep(sweep.res.list_Bal, GT = F)
bcmvn_bal <- find.pK(sweep.stats_bal)
BAL.list_0[[i]] = FindNeighbors(BAL.list_0[[i]], reduction = "pca")
BAL.list_0[[i]] = FindClusters(BAL.list_0[[i]], resolution = 0.6)
## Homotypic Doublet Proportion Estimate -------------------------------------------------------------------------------------
annotations = BAL.list_0[[i]]$seurat_clusters
homotypic.prop <- modelHomotypic(annotations) ## ex: annotations <- [email protected]$ClusteringResults
nExp_poi <- round(0.075*length(colnames(BAL.list_0[[i]]))) ## Assuming 7.5% doublet formation rate - tailor for your dataset
nExp_poi.adj <- round(nExp_poi*(1-homotypic.prop))
## Run DoubletFinder with varying classification stringencies ----------------------------------------------------------------
BAL.list_0[[i]] <- doubletFinder_v3(BAL.list_0[[i]], PCs = 1:30, pN = 0.25, pK = 0.09,
nExp = nExp_poi, reuse.pANN = FALSE, sct = FALSE)
BAL.list_0[[i]]$pANN = BAL.list_0[[i]]@meta.data[[15]]
BAL.list_0[[i]] <- doubletFinder_v3(BAL.list_0[[i]], PCs = 1:30, pN = 0.25,
pK = 0.09, nExp = nExp_poi.adj,
reuse.pANN = "pANN",
sct = FALSE)
##Save all the Doublet-singlet Plots
Idents(BAL.list_0[[i]]) = BAL.list_0[[i]]@meta.data[[16]]
pdf(paste0(BAL.list_0[[i]]$Sample_name,"_", "Doublets_dimplot.pdf"))
DimPlot(BAL.list_0[[i]])
dev.off()
}
for (i in names(BAL.list_0)){
BAL.list_0[[i]] = SubsetData(BAL.list_0[[i]], cells = rownames(BAL.list_0[[i]]@meta.data)[ which(BAL.list_0[[i]]@meta.data[[16]] == "Singlet") ])
}
"Perform SCTransform on
all samples in the list"
for (i in names(BAL.list_0)) {
BAL.list_0[[i]] <- SCTransform(BAL.list_0[[i]], verbose = FALSE,
vars.to.regress = c("percent.hbb",
"percent.mt",
"percent.rps",
"percent.rpl"))
}
BAL_doubletremoved_sctransformed = BAL.list_0
"Select Integration features"
BAL.features <- SelectIntegrationFeatures(object.list = BAL_doubletremoved_sctransformed, nfeatures = 3500)
"Prepare 'SCT' based Integration"
BAL_doubletremoved_sctransformed <- PrepSCTIntegration(object.list = BAL_doubletremoved_sctransformed, anchor.features = BAL.features)
"Find Anchors within datasets(samples)
to integrate using 'SCT'"
BAL.anchors <- FindIntegrationAnchors(object.list = BAL_doubletremoved_sctransformed, normalization.method = "SCT",
anchor.features = BAL.features)
BAL.integrated <- IntegrateData(anchorset = BAL.anchors, normalization.method = "SCT")
"Perform PCA and UMAP"
BAL.integrated <- RunPCA(object = BAL.integrated, verbose = FALSE)
BAL.integrated <- RunUMAP(object = BAL.integrated, dims = 1:30)
BAL.integrated = FindNeighbors(BAL.integrated, reduction = "pca", dims = 1:13)
BAL.integrated <- FindClusters(object = BAL.integrated, graph.name = "integrated_snn" ,resolution = 0.6)
DimPlot(BAL.integrated, split.by = "seurat_clusters", ncol = 5)
DimPlot(BAL.integrated, split.by = "Type")
"Dimplot UMAP plotted by Groups- Sample and Day"
plots <- DimPlot(BAL.integrated, group.by = c("Sample", "Day"))
pdf("/Integrated_BALs_Split_by_Sample&Day_UMAP.pdf", width = 15, height = 10)
plots & theme(legend.position = "top") &
guides(color = guide_legend(nrow = 4, byrow = TRUE,override.aes = list(size = 2.5)))
dev.off()
"Dimplot of UMAP Split by Day"
pdf("/Integrated_BALs_Split_by_Sample&Day_UMAP.pdf", width = 15, height = 10)
DimPlot(BAL.integrated, reduction = "umap", split.by = "Day")
dev.off()
"Dimplot with Sample Name"
Idents(BAL.integrated) = BAL.integrated$Sample_name
pdf("/Integrated_BALs_Split_by_SampleName_UMAP.pdf", width = 15, height = 10)
DimPlot(BAL.integrated, reduction = "umap")
dev.off()
##----------End of this Block-------------##
##--------------Panel of Gene Markers--------------##
"Assign RNA as Default Assay"
DefaultAssay(BAL.integrated) <- "RNA"
"Normalize RNA data for
visualization purposes"
BAL.integrated <- NormalizeData(BAL.integrated, verbose = FALSE)
"Get a list of Featues (Genes)
to plot"
features = c("MS4A1","FOXP3","GATA3", "PTPRC","RORC","TBX21","BCL6", "CCR7","CD28","CD4", "CD69",
"CD3D","CD3E", "FASLG","IL2RA", "CD8A", "GZMB","FCER1G","ITGAM","CD163",
"CCR2","CX3CR1", "ITGAX", "FCGR3", "KLRG1", "AXL", "SIGLEC6","TNFRSF17",
"CD101","CSF1R", "CXCR5","CXCR6","IRF4", "ITGA1","ITGAE","PDCD1",
"PRDM1","SPI1","STAT3","STAT4","STAT5A", "TCF7", "TOX", "ISG15",
"IFI6","CXCL8","CXCL3","CCL2")
"Plot FeaturePlot (UMAP)
for Immune Cell Markers"
p <- FeaturePlot(BAL.integrated, features=features, ncol=4)
pdf(paste0("/Integrated_BALs","_FeaturePlot_MarkerGenes_umap.pdf"),
height = 30, width = 15)
p
dev.off()
"Assign 'Sample' Column as Idents &
Plot ViolinPlots for Immune Cell Markers by Sample"
Idents(BAL.integrated) = BAL.integrated$Sample
p <- VlnPlot(BAL.integrated, features=features, pt.size = 0)
pdf(paste0("/Integrated_BALs","_VLNplot_MarkerGenes_bySample.pdf"),
height = 20, width = 30)
p
dev.off()
"Plot RidgePlots for
Immune cell markers group by Sample"
p = RidgePlot(BAL.integrated, features = features, group.by = "Sample")
pdf(paste0("/Integrated_BALs","_RidgePlots_MarkerGenes_bySample.pdf"),
height = 20, width = 30)
p
dev.off()
"Plot RidgePlots for
Immune cell markers group by Day"
p = RidgePlot(BAL.integrated, features = features, group.by = "Day")
pdf(paste0("/Integrated_BALs","_RidgePlots_MarkerGenes_byDay.pdf"),
height = 20, width = 30)
p
dev.off()
"Plot DimPlot for
Immune cell markers split by Day"
Idents(BAL.integrated) = BAL.integrated$Day
p = DimPlot(BAL.integrated,split.by = "Day")
png(paste0("/Integrated_BALs","_DimPlots_MarkerGenes_byDay.pdf"),
height = 10, width = 15)
p
dev.off()
"Plot Dimplot fo Immune cell markers Split
by Type_Day"
BAL.integrated$Type_Day = paste0(BAL.integrated$Type, "_", BAL.integrated$Day)
Idents(BAL.integrated) = BAL.integrated$Type_Day
p = DimPlot(BAL.integrated,split.by = "Type_Day", ncol = 4)
pdf(paste0("/Integrated_BALs","_DimPlots_MarkerGenes_byType_Day.pdf"),
height = 10, width = 15)
p
dev.off()
##----------End of this Block-------------##
saveRDS(BAL.integrated, "/BAL_Integrated_Seurat_Obj.rds")
##-----------Run SingleR for BP Encode------------##
"Download BP encode
database"
BPencode.se = readRDS("Analysis_AB/BPEncode.rds")
#hpce.se = readRDS("Analysis_AB/HumanEncode.rds")
BAL_Integrated.sce <- as.SingleCellExperiment(BAL.integrated)
"Convert the seurat object to
singlecellexperiment"
singleR_BAL_intergrated_bp = SingleR(test = BAL_Integrated.sce, ref = BPencode.se,
labels = BPencode.se$label.main, fine.tune = T,
prune = T, BPPARAM = MulticoreParam(4))
"Map co-ordinates of UMAP onto
singleR object"
BAL.integrated$singleRclusters_BP_pruned = singleR_BAL_intergrated_bp$pruned.labels
"Plot DimPlot for singleR clusters-BP
split by singleRclusters"
Idents(BAL.integrated) = BAL.integrated$singleRclusters_BP_pruned
p = DimPlot(BAL.integrated,split.by = "singleRclusters_BP_pruned", ncol =4)
pdf(paste0("/Integrated_BALs","_DimPlots_pruned-singleR.pdf"),
height = 10, width = 15)
p
dev.off()
"Plot Dimplot for
SingleR cluster-BP"
p = DimPlot(BAL.integrated, ncol =4)
pdf(paste0("/Integrated_BALs","_DimPlots_pruned-singleR.pdf"),
height = 10, width = 15)
p
dev.off()
"Plot Violin plots split
by singleR clusters-BP"
p <- VlnPlot(BAL.integrated, features=features, ncol = 5, pt.size = 0)
pdf(paste0("/Integrated_BALs","_VLNplot_MarkerGenes_bySingleRClusters-BP.pdf"),
height = 25, width = 30)
p
dev.off()
"Plot DotPlots across
singleR clusters-BP encode"
p <- DotPlot(BAL.integrated, features=features, cols = c("Blue", "Red"),
col.min = -1, col.max = 1, dot.scale = 10) + RotatedAxis()
pdf(paste0("/Integrated_BALs","_DotPlot_MarkerGenes_bySingleRClusters-BP.pdf"),
height = 20, width = 30)
p
dev.off()
"Scale data for sake of plotting heatmap"
data_Integrated_BAL <- ScaleData(object = BAL.integrated, features = rownames(BAL.integrated))
"Plot Heatmap split
by singleR clusters-BP"
p <- DoHeatmap(subset(BAL.integrated,downsample =50), features = features,
size = 3, slot = "scale.data", angle = 45, raster = T, draw.lines = T,
group.bar.height = 0.01, disp.min = -1, disp.max = 1, combine = T)+scale_fill_gradientn(
colors = rev(RColorBrewer::brewer.pal(n = 8,name = "RdBu")) ) + guides(color=FALSE)
pdf(paste0("/Integrated_BALs","_Heatmap_bySingleRClusters-BP.pdf"),
height = 10, width = 20)
p
dev.off()
"Plot Heatmap split
by Type"
Idents(BAL.integrated) = "Type"
p <- DoHeatmap(subset(BAL.integrated,downsample =50), features = features,
size = 3, slot = "scale.data", angle = 45, raster = T,
group.bar.height = 0.01, disp.min = -1, disp.max = 1, combine = T)+scale_fill_gradientn(
colors = rev(RColorBrewer::brewer.pal(n = 8,name = "RdBu")) ) + guides(color=FALSE)
pdf(paste0("/Integrated_BALs","_Heatmap_byType.pdf"),
height = 10, width = 20)
p
dev.off()
"Plot Heatmap split
by Type_Day"
Idents(BAL.integrated) = "Type_Day"
p <- DoHeatmap(subset(BAL.integrated,downsample =50), features = features,
size = 3, slot = "scale.data", angle = 45, raster = T,
group.bar.height = 0.01, disp.min = -1, disp.max = 1, combine = T)+scale_fill_gradientn(
colors = rev(RColorBrewer::brewer.pal(n = 8,name = "RdBu")) ) + guides(color=FALSE)
pdf(paste0("/Integrated_BALs","_Heatmap_byType_Day.pdf"),
height = 10, width = 20)
p
dev.off()
##----------End of this Block-------------##
##---------Get Cell Counts and Proportions-----------##
"Save the file to an RDS object"
saveRDS(BAL.integrated, file = "/BAL_Integrated_SingleR_SeuratObj.rds")
#Get proportions of cells per Single R cluster
x = knitr::kable(prop.table(table(BAL.integrated$Celltype)),"html")
kable_styling(x, font_size = 50, bootstrap_options = "striped", full_width = F) %>% save_kable("BAL_Integrated/BAL_Integrated_Cell_Cluster_Proportions.png")
e#Get Count of cells per Single R cluster
x = knitr::kable(table(BAL.integrated$Celltype),"html")
kable_styling(x, font_size = 45, bootstrap_options = "striped", full_width = F) %>% save_kable("BAL_Integrated/BAL_Integrated_Cell_Cluster_counts.png")
##-----Make 3D umap------##
# Re-run UMAPs that you have accurate calculations for all UMAP(s)
BAL.integrated <- RunUMAP(BAL.integrated,
dims = 1:13,
n.components = 3L)
# Extract tSNE information from Seurat Object
umap_1 <- BAL.integrated[["umap"]]@cell.embeddings[,1]
umap_2 <- BAL.integrated[["umap"]]@cell.embeddings[,2]
umap_3 <- BAL.integrated[["umap"]]@cell.embeddings[,3]
# Visualize what headings are called so that you can extract them to form a dataframe
Embeddings(object = BAL.integrated, reduction = "umap")
# Prepare a dataframe for cell plotting
plot.data <- FetchData(object = BAL.integrated, vars = c("UMAP_1", "UMAP_2", "UMAP_3", "singleRclusters_BP_pruned"))
# Make a column of row name identities (these will be your cell/barcode names)
plot.data$label <- paste(rownames(plot.data))
# Plot your data, in this example my Seurat object had 21 clusters (0-20)
plot_ly(data = plot.data,
x = ~UMAP_1, y = ~UMAP_2, z = ~UMAP_3,
color = ~singleRclusters_BP_pruned,
colors = c("lightseagreen",
"gray50",
"darkgreen",
"red4",
"red",
"turquoise4",
"black",
"yellow4",
"royalblue1",
"lightcyan3",
"peachpuff3",
"khaki3",
"gray20",
"orange2",
"royalblue4",
"yellow3",
"gray80",
"darkorchid1",
"lawngreen",
"darkmagenta"),
type = "scatter3d",
mode = "markers",
marker = list(size = 2, width=2), # controls size of points
text=~label, #This is that extra column we made earlier for which we will use for cell ID
hoverinfo="text")
"Manual Cell selection"
[email protected]$Celltype = "NA"
Idents(BAL.integrated) =BAL.integrated$singleRclusters_BP_pruned
plot = DimPlot(BAL.integrated)
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "C1"
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "C2"
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "C3"
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "C4"
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "Macrophages/Monocytes"
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "C6"
select.cells = CellSelector(plot = plot)
[email protected][select.cells,]$Celltype = "C7"
#Plot UMAP with new cluster types
Idents(BAL.integrated) = BAL.integrated$Celltype
DimPlot(BAL.integrated)
#Assign cell types
BAL.integrated$Celltype[BAL.integrated$Celltype == "C1"] <- "Macrophages"
BAL.integrated$Celltype[BAL.integrated$Celltype == "C2"] <- "DC" # Check
BAL.integrated$Celltype[BAL.integrated$Celltype == "C3"] <- "Unclassified"
BAL.integrated$Celltype[BAL.integrated$Celltype == "C4"] <- "HSCs"
BAL.integrated$Celltype[BAL.integrated$Celltype == "C5"] <- "T-cells/NKcells"
BAL.integrated$Celltype[BAL.integrated$Celltype == "C6"] <- "Epithelial Cells" # Check
BAL.integrated$Celltype[BAL.integrated$Celltype == "NA"] <- "Unclassified"
Idents(BAL.integrated) = BAL.integrated$Celltype
Idents(BAL.integrated) = "Celltype"
pdf(paste0("BAL_Integrated_UMAP_splitBy_TypeDay.pdf"),
height = 10, width = 15)
DimPlot(BAL.integrated, split.by = "Type_Day", ncol = 2,
cols = c("steelblue2","gray","springgreen3","tan3","royalblue1",
"yellow3",
"red3","mediumturquoise"))
dev.off()
saveRDS(BAL.integrated, file = "/BAL_Integrated_New_Celltypes_object.rds")
"Read SingleRSeurat-object to a file"
BAL.integrated = readRDS(file = "BAL_Integrated/BAL_Integrated_New_Celltypes_object.rds")
Idents(BAL.integrated) = "Type_Day"
BAL.integrated = subset(BAL.integrated, subset = (Type_Day != "Untreated_Necropsy"))
Idents(BAL.integrated) = "Celltype"
png("Panel_A_UMAP.png", height = 700, width = 1000)
DimPlot(BAL.integrated,cols = c("steelblue2","gray","springgreen3","tan3","royalblue1",
"yellow3",
"red3","mediumturquoise"), dims = c(1,2))&
ggplot2::theme(axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
strip.text = element_blank(),
legend.position = "right", legend.direction="vertical",legend.key.size = unit(0.5, "in"),
axis.line = element_blank(), legend.text=element_text(size=25) ) & labs(title = "")
dev.off()
#Plot ISGs and Inflammatory Genes
ISGs = c("IFI6","IFI27","ISG15","MX1","ISG20","MX2","OAS2","IFIT3",
"IRF7","OAS1")
CCK = c("CCL4L1", "CXCL10", "CXCL3","CXCL8")
IFGs = c("IL6", "TNF",
"IL10", "IL1B", "IFNB1")
Idents(BAL.integrated) = "Celltype"
BAL.integrated_scaled= ScaleData(BAL.integrated)
DefaultAssay(BAL.integrated_scaled) = "RNA"
Idents(BAL.integrated_scaled) = "Celltype"
p <- DoHeatmap(subset(BAL.integrated_scaled, downsample = 50), features = ISGs,
size = 3, slot = "scale.data", angle = 45, raster = T,
group.bar.height = 0.01, disp.min = -1, disp.max = 1, combine = T)+scale_fill_gradientn(
colors = rev(RColorBrewer::brewer.pal(n = 8,name = "RdBu"))) + guides(color=FALSE)
pdf(paste("BAL_Integrated_DimHeatmap_",st, ".pdf", sep = ""), height = 10, width = 10)
p
dev.off()
#Plotting DotPlots-InflammatoryGenes
BAL.integrated = subset(BAL.integrated, subset = (Type_Day != "Untreated_Necropsy"))
Subsetted_Macrophages = subset(BAL.integrated, subset = (Celltype == "Macrophages"))
Subsetted_Macrophages$CellType_Typeday = paste0(Subsetted_Macrophages$Celltype,"_", Subsetted_Macrophages$Type_Day)
Subsetted_Macrophages$Day_Type = paste0(Subsetted_Macrophages$Day,"_", Subsetted_Macrophages$Type)
Idents(Subsetted_Macrophages) = "Day_Type"
pdf(paste0("Macrophages_splitBy_Day_Type.pdf"))
Baseline_Treated <- WhichCells(Subsetted_Macrophages, idents = c("Baseline_Treated"))
Baseline_Untreated <- WhichCells(Subsetted_Macrophages, idents = c( "Baseline_Untreated"))
Day4_Treated <- WhichCells(Subsetted_Macrophages, idents = c( "Day4_Treated"))
Day4_Untreated <- WhichCells(Subsetted_Macrophages, idents = c( "Day4_Untreated"))
BAL.integrated$Day_Type = paste0(BAL.integrated$Day,"_", BAL.integrated$Type)
Idents(BAL.integrated) = "Day_Type"
p = DimPlot(BAL.integrated, split.by ="Day_Type", cols = c("royalblue",
"indianred2",
"forestgreen","goldenrod2"), ncol = 2) &
ggplot2::theme(axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
strip.text = element_blank(),
legend.position = "right", legend.direction="vertical",legend.key.size = unit(0.5, "in"),
axis.line = element_blank(), legend.text=element_text(size=25) ) & labs(title = "")
png(paste0("Integrated_splitBy_DayType.png"),
width = 900, height = 600)
p
dev.off()
P = DimPlot(Subsetted_Macrophages, split.by ="Day_Type", cols = c("royalblue",
"indianred2",
"forestgreen","goldenrod2"), ncol = 2) &
ggplot2::theme(axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
strip.text = element_blank(),
legend.position = "bottom", legend.direction="horizontal",legend.key.size = unit(0.35, "in"),
axis.line = element_blank() ) & labs(title = "")
png(paste0("Subsetted_Macrophages_splitBy_DayType.png"),
width = 700, height = 600)
P
dev.off()
#Dotplots for IFGs
Idents(BAL.integrated) = "Day_Type"
p = DotPlot(BAL.integrated, features=IFGs, cols = c("navyblue","red"),
col.min = -1,group.by = "Day_Type",col.max = 1, dot.scale = 10, scale.by = "size") + RotatedAxis()
pdf(paste0("Macrophages-IFGs_DotPlots_byTypeDay.pdf"), height = 5, width = 10)
p
dev.off()
#Dotplots for ISGs
Idents(BAL.integrated) = "Day_Type"
p = DotPlot(BAL.integrated, features=ISGs, cols = c("navyblue","red"),
col.min = -1,group.by = "Day_Type",col.max = 1, dot.scale = 10, scale.by = "size") + RotatedAxis()
pdf(paste0("Macrophages-ISGs_DotPlots_byTypeDay.pdf"), height = 7, width = 10)
p
dev.off()
#Dotplots for CCKs
Idents(Subsetted_Macrophages) = "Day_Type"
p = DotPlot(Subsetted_Macrophages, features=CCK, cols = c("navyblue","red"),
group.by = "Day_Type",
col.min = -1, col.max = 1, dot.scale = 5, scale.by = "size") + RotatedAxis()
pdf(paste0("Macrophages-CCKs_DotPlots_byTypeDay.pdf"), height = 5, width = 10)
p
dev.off()
#Feature Plots for ISGs
Idents(BAL.integrated) = "Celltype"
p1 = lapply( ISGs , function(x) { FeaturePlot( BAL.integrated,
features= x ,
pt.size = 1,
split.by = "Day_Type",
cols = c("grey90","darkgreen") , combine = T,
max.cutoff = "q60") &
ggplot2::theme(axis.title = element_blank() ,
axis.text = element_blank(),
axis.ticks = element_blank(),
strip.text = element_blank() ,
legend.position = "left" , legend.direction="vertical",
legend.key.size = unit(1, "in"),legend.text=element_text(size=50, face = "bold"),
axis.line = element_blank() ) & labs(title = "") })
png(paste0("ALLCells-ISGs_FeaturePlots_byTypeDay.png"),
height = 7000, width = 4600)
patchwork::wrap_plots(p1, nrow = 10, ncol = 1)
dev.off()
#Feature Plots for IFGs
Idents(BAL.integrated) = "Celltype"
p2 = lapply( IFGs , function(x) { FeaturePlot( BAL.integrated,
features= x ,
pt.size = 1,
split.by = "Day_Type",
cols = c("grey90","brown1") , combine = T,
max.cutoff = "q60") &
ggplot2::theme(axis.title = element_blank() ,
axis.text = element_blank(),
axis.ticks = element_blank(),
strip.text = element_blank() ,
legend.position = "left" , legend.direction="vertical",legend.key.size = unit(0.35, "in"),
axis.line = element_blank() ) & labs(title = "") })
png(paste0("ALLCells-IFGs_FeaturePlots_byTypeDay.png"),
height = 2200, width = 1900)
patchwork::wrap_plots(p2, nrow = 5, ncol = 1, widths = 30, heights = 10)
dev.off()
#Feature Plots for CCKs
Idents(BAL.integrated) = "Celltype"
p3 = lapply( CCK , function(x) { FeaturePlot( BAL.integrated,
features= x ,
pt.size = 1,
split.by = "Day_Type",
cols = c("grey90","darkorchid1") , combine = T,max.cutoff = "q60") &
ggplot2::theme(axis.title = element_blank() ,
axis.text = element_blank(),
axis.ticks = element_blank(),
strip.text = element_blank() ,
legend.position = "left" , legend.direction="vertical",legend.key.size = unit(0.35, "in"),
axis.line = element_blank() ) & labs(title = "")})
png(paste0("ALLCells-CCKs_FeaturePlots_byTypeDay.png"),
height = 1500, width = 1400)
patchwork::wrap_plots(p3, nrow = 4, ncol = 1, widths = 30, heights = 10)
dev.off()
#Violin plots for IFGs
p = VlnPlot(Subsetted_Macrophages, features = IFGs, pt.size = 0, split.by = "Day_Type", ncol =4,
group.by = "Day_Type", cols = c("#85D1FF","#FFC1AD","#00578B","#FF8C69")) &
ggplot2::theme( text = element_text(size=20))
pdf(paste0("Macrophages-IFGs_VLnplots_byTypeDay.pdf"),
height = 10, width = 20)
p
dev.off()
#Violin plots for ISGs
p = VlnPlot(Subsetted_Macrophages, features = ISGs, pt.size = 0, split.by = "Day_Type", ncol =3,
group.by = "Day_Type", cols = c("#85D1FF","#FFC1AD","#00578B","#FF8C69"))
pdf(paste0("Macrophages-ISGs_VLnplots_byTypeDay.pdf"),
height = 15, width = 20)
p
dev.off()
#Violin plots for CCKs
p = VlnPlot(Subsetted_Macrophages, features = CCK, pt.size = 0, split.by = "Day_Type", ncol =4,
group.by = "Day_Type", cols = c("#85D1FF","#FFC1AD","#00578B","#FF8C69"))
pdf(paste0("Macrophages-CCKs_VLnplots_byTypeDay.pdf"),
height = 3.5, width = 15)
p
dev.off()
##----Get Session info----##
sessionInfo()