-
Notifications
You must be signed in to change notification settings - Fork 22
/
flux_emphasis.py
447 lines (385 loc) · 14 KB
/
flux_emphasis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
from typing import TYPE_CHECKING, Optional
from pydash import flatten
import torch
from transformers.models.clip.tokenization_clip import CLIPTokenizer
from einops import repeat
if TYPE_CHECKING:
from flux_pipeline import FluxPipeline
def parse_prompt_attention(text):
"""
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12
[abc] - decreases attention to abc by a multiplier of 1.1
\\( - literal character '('
\\[ - literal character '['
\\) - literal character ')'
\\] - literal character ']'
\\ - literal character '\'
anything else - just text
>>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
>>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
>>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
>>> parse_prompt_attention('\\(literal\\]')
[['(literal]', 1.0]]
>>> parse_prompt_attention('(unnecessary)(parens)')
[['unnecessaryparens', 1.1]]
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[['a ', 1.0],
['house', 1.5730000000000004],
[' ', 1.1],
['on', 1.0],
[' a ', 1.1],
['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
"""
import re
re_attention = re.compile(
r"""
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
\)|]|[^\\()\[\]:]+|:
""",
re.X,
)
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
res = []
round_brackets = []
square_brackets = []
round_bracket_multiplier = 1.1
square_bracket_multiplier = 1 / 1.1
def multiply_range(start_position, multiplier):
for p in range(start_position, len(res)):
res[p][1] *= multiplier
for m in re_attention.finditer(text):
text = m.group(0)
weight = m.group(1)
if text.startswith("\\"):
res.append([text[1:], 1.0])
elif text == "(":
round_brackets.append(len(res))
elif text == "[":
square_brackets.append(len(res))
elif weight is not None and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), float(weight))
elif text == ")" and len(round_brackets) > 0:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
elif text == "]" and len(square_brackets) > 0:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re_break, text)
for i, part in enumerate(parts):
if i > 0:
res.append(["BREAK", -1])
res.append([part, 1.0])
for pos in round_brackets:
multiply_range(pos, round_bracket_multiplier)
for pos in square_brackets:
multiply_range(pos, square_bracket_multiplier)
if len(res) == 0:
res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res
def get_prompts_tokens_with_weights(
clip_tokenizer: CLIPTokenizer, prompt: str, debug: bool = False
):
"""
Get prompt token ids and weights, this function works for both prompt and negative prompt
Args:
pipe (CLIPTokenizer)
A CLIPTokenizer
prompt (str)
A prompt string with weights
Returns:
text_tokens (list)
A list contains token ids
text_weight (list)
A list contains the correspodent weight of token ids
Example:
import torch
from transformers import CLIPTokenizer
clip_tokenizer = CLIPTokenizer.from_pretrained(
"stablediffusionapi/deliberate-v2"
, subfolder = "tokenizer"
, dtype = torch.float16
)
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
clip_tokenizer = clip_tokenizer
,prompt = "a (red:1.5) cat"*70
)
"""
texts_and_weights = parse_prompt_attention(prompt)
text_tokens, text_weights = [], []
maxlen = clip_tokenizer.model_max_length
for word, weight in texts_and_weights:
# tokenize and discard the starting and the ending token
token = clip_tokenizer(
word, truncation=False, padding=False, add_special_tokens=False
).input_ids
# so that tokenize whatever length prompt
# the returned token is a 1d list: [320, 1125, 539, 320]
if debug:
print(
token,
"|FOR MODEL LEN{}|".format(maxlen),
clip_tokenizer.decode(
token, skip_special_tokens=True, clean_up_tokenization_spaces=True
),
)
# merge the new tokens to the all tokens holder: text_tokens
text_tokens = [*text_tokens, *token]
# each token chunk will come with one weight, like ['red cat', 2.0]
# need to expand weight for each token.
chunk_weights = [weight] * len(token)
# append the weight back to the weight holder: text_weights
text_weights = [*text_weights, *chunk_weights]
return text_tokens, text_weights
def group_tokens_and_weights(
token_ids: list,
weights: list,
pad_last_block=False,
bos=49406,
eos=49407,
max_length=77,
pad_tokens=True,
):
"""
Produce tokens and weights in groups and pad the missing tokens
Args:
token_ids (list)
The token ids from tokenizer
weights (list)
The weights list from function get_prompts_tokens_with_weights
pad_last_block (bool)
Control if fill the last token list to 75 tokens with eos
Returns:
new_token_ids (2d list)
new_weights (2d list)
Example:
token_groups,weight_groups = group_tokens_and_weights(
token_ids = token_id_list
, weights = token_weight_list
)
"""
# TODO: Possibly need to fix this, since this doesn't seem correct.
# Ignoring for now since I don't know what the consequences might be
# if changed to <= instead of <.
max_len = max_length - 2 if max_length < 77 else max_length
# this will be a 2d list
new_token_ids = []
new_weights = []
while len(token_ids) >= max_len:
# get the first 75 tokens
temp_77_token_ids = [token_ids.pop(0) for _ in range(max_len)]
temp_77_weights = [weights.pop(0) for _ in range(max_len)]
# extract token ids and weights
if pad_tokens:
if bos is not None:
temp_77_token_ids = [bos] + temp_77_token_ids + [eos]
temp_77_weights = [1.0] + temp_77_weights + [1.0]
else:
temp_77_token_ids = temp_77_token_ids + [eos]
temp_77_weights = temp_77_weights + [1.0]
# add 77 token and weights chunk to the holder list
new_token_ids.append(temp_77_token_ids)
new_weights.append(temp_77_weights)
# padding the left
if len(token_ids) > 0:
if pad_tokens:
padding_len = max_len - len(token_ids) if pad_last_block else 0
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
new_token_ids.append(temp_77_token_ids)
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
new_weights.append(temp_77_weights)
else:
new_token_ids.append(token_ids)
new_weights.append(weights)
return new_token_ids, new_weights
def standardize_tensor(
input_tensor: torch.Tensor, target_mean: float, target_std: float
) -> torch.Tensor:
"""
This function standardizes an input tensor so that it has a specific mean and standard deviation.
Parameters:
input_tensor (torch.Tensor): The tensor to standardize.
target_mean (float): The target mean for the tensor.
target_std (float): The target standard deviation for the tensor.
Returns:
torch.Tensor: The standardized tensor.
"""
# First, compute the mean and std of the input tensor
mean = input_tensor.mean()
std = input_tensor.std()
# Then, standardize the tensor to have a mean of 0 and std of 1
standardized_tensor = (input_tensor - mean) / std
# Finally, scale the tensor to the target mean and std
output_tensor = standardized_tensor * target_std + target_mean
return output_tensor
def apply_weights(
prompt_tokens: torch.Tensor,
weight_tensor: torch.Tensor,
token_embedding: torch.Tensor,
eos_token_id: int,
pad_last_block: bool = True,
) -> torch.FloatTensor:
mean = token_embedding.mean()
std = token_embedding.std()
if pad_last_block:
pooled_tensor = token_embedding[
torch.arange(token_embedding.shape[0], device=token_embedding.device),
(
prompt_tokens.to(dtype=torch.int, device=token_embedding.device)
== eos_token_id
)
.int()
.argmax(dim=-1),
]
else:
pooled_tensor = token_embedding[:, -1]
for j in range(len(weight_tensor)):
if weight_tensor[j] != 1.0:
token_embedding[:, j] = (
pooled_tensor
+ (token_embedding[:, j] - pooled_tensor) * weight_tensor[j]
)
return standardize_tensor(token_embedding, mean, std)
@torch.inference_mode()
def get_weighted_text_embeddings_flux(
pipe: "FluxPipeline",
prompt: str = "",
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
target_device: Optional[torch.device] = torch.device("cuda:0"),
target_dtype: Optional[torch.dtype] = torch.bfloat16,
debug: bool = False,
):
"""
This function can process long prompt with weights, no length limitation
for Stable Diffusion XL
Args:
pipe (StableDiffusionPipeline)
prompt (str)
prompt_2 (str)
neg_prompt (str)
neg_prompt_2 (str)
num_images_per_prompt (int)
device (torch.device)
Returns:
prompt_embeds (torch.Tensor)
neg_prompt_embeds (torch.Tensor)
"""
device = device or pipe._execution_device
eos = pipe.clip.tokenizer.eos_token_id
eos_2 = pipe.t5.tokenizer.eos_token_id
bos = pipe.clip.tokenizer.bos_token_id
bos_2 = pipe.t5.tokenizer.bos_token_id
clip = pipe.clip.hf_module
t5 = pipe.t5.hf_module
tokenizer_clip = pipe.clip.tokenizer
tokenizer_t5 = pipe.t5.tokenizer
t5_length = 512 if pipe.name == "flux-dev" else 256
clip_length = 77
# tokenizer 1
prompt_tokens_clip, prompt_weights_clip = get_prompts_tokens_with_weights(
tokenizer_clip, prompt, debug=debug
)
# tokenizer 2
prompt_tokens_t5, prompt_weights_t5 = get_prompts_tokens_with_weights(
tokenizer_t5, prompt, debug=debug
)
prompt_tokens_clip_grouped, prompt_weights_clip_grouped = group_tokens_and_weights(
prompt_tokens_clip,
prompt_weights_clip,
pad_last_block=True,
bos=bos,
eos=eos,
max_length=clip_length,
)
prompt_tokens_t5_grouped, prompt_weights_t5_grouped = group_tokens_and_weights(
prompt_tokens_t5,
prompt_weights_t5,
pad_last_block=True,
bos=bos_2,
eos=eos_2,
max_length=t5_length,
pad_tokens=False,
)
prompt_tokens_t5 = flatten(prompt_tokens_t5_grouped)
prompt_weights_t5 = flatten(prompt_weights_t5_grouped)
prompt_tokens_clip = flatten(prompt_tokens_clip_grouped)
prompt_weights_clip = flatten(prompt_weights_clip_grouped)
prompt_tokens_clip = tokenizer_clip.decode(
prompt_tokens_clip, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
prompt_tokens_clip = tokenizer_clip(
prompt_tokens_clip,
add_special_tokens=True,
padding="max_length",
truncation=True,
max_length=clip_length,
return_tensors="pt",
).input_ids.to(device)
prompt_tokens_t5 = tokenizer_t5.decode(
prompt_tokens_t5, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
prompt_tokens_t5 = tokenizer_t5(
prompt_tokens_t5,
add_special_tokens=True,
padding="max_length",
truncation=True,
max_length=t5_length,
return_tensors="pt",
).input_ids.to(device)
prompt_weights_t5 = torch.cat(
[
torch.tensor(prompt_weights_t5, dtype=torch.float32),
torch.full(
(t5_length - torch.tensor(prompt_weights_t5).numel(),),
1.0,
dtype=torch.float32,
),
],
dim=0,
).to(device)
clip_embeds = clip(
prompt_tokens_clip, output_hidden_states=True, attention_mask=None
)["pooler_output"]
if clip_embeds.shape[0] == 1 and num_images_per_prompt > 1:
clip_embeds = repeat(clip_embeds, "1 ... -> bs ...", bs=num_images_per_prompt)
weight_tensor_t5 = torch.tensor(
flatten(prompt_weights_t5), dtype=torch.float32, device=device
)
t5_embeds = t5(prompt_tokens_t5, output_hidden_states=True, attention_mask=None)[
"last_hidden_state"
]
t5_embeds = apply_weights(prompt_tokens_t5, weight_tensor_t5, t5_embeds, eos_2)
if debug:
print(t5_embeds.shape)
if t5_embeds.shape[0] == 1 and num_images_per_prompt > 1:
t5_embeds = repeat(t5_embeds, "1 ... -> bs ...", bs=num_images_per_prompt)
txt_ids = torch.zeros(
num_images_per_prompt,
t5_embeds.shape[1],
3,
device=target_device,
dtype=target_dtype,
)
t5_embeds = t5_embeds.to(target_device, dtype=target_dtype)
clip_embeds = clip_embeds.to(target_device, dtype=target_dtype)
return (
clip_embeds,
t5_embeds,
txt_ids,
)