diff --git a/.gitignore b/.gitignore index 5bdf0d1b533ae..354e08c2d86d0 100644 --- a/.gitignore +++ b/.gitignore @@ -136,5 +136,8 @@ dmypy.json # macOS display setting files .DS_Store +# Wandb directory +wandb/ + # asdf tool versions -.tool-versions \ No newline at end of file +.tool-versions diff --git a/docs/ecosystem/wandb_tracking.ipynb b/docs/ecosystem/wandb_tracking.ipynb new file mode 100644 index 0000000000000..a923ad668b46a --- /dev/null +++ b/docs/ecosystem/wandb_tracking.ipynb @@ -0,0 +1,625 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Weights & Biases\n", + "\n", + "This notebook goes over how to track your LangChain experiments into one centralized Weights and Biases dashboard. To learn more about prompt engineering and the callback please refer to this Report which explains both alongside the resultant dashboards you can expect to see.\n", + "\n", + "Run in Colab: https://colab.research.google.com/drive/1DXH4beT4HFaRKy_Vm4PoxhXVDRf7Ym8L?usp=sharing\n", + "\n", + "View Report: https://wandb.ai/a-sh0ts/langchain_callback_demo/reports/Prompt-Engineering-LLMs-with-LangChain-and-W-B--VmlldzozNjk1NTUw#👋-how-to-build-a-callback-in-langchain-for-better-prompt-engineering" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install wandb\n", + "!pip install pandas\n", + "!pip install textstat\n", + "!pip install spacy\n", + "!python -m spacy download en_core_web_sm" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "T1bSmKd6V2If" + }, + "outputs": [], + "source": [ + "import os\n", + "os.environ[\"WANDB_API_KEY\"] = \"3310fceb9c83df474d00e0a2aeb54e04238cf6f7\"\n", + "# os.environ[\"OPENAI_API_KEY\"] = \"\"\n", + "# os.environ[\"SERPAPI_API_KEY\"] = \"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "8WAGnTWpUUnD" + }, + "outputs": [], + "source": [ + "from datetime import datetime\n", + "from langchain.callbacks import WandbCallbackHandler, StdOutCallbackHandler\n", + "from langchain.callbacks.base import CallbackManager\n", + "from langchain.llms import OpenAI" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```\n", + "Callback Handler that logs to Weights and Biases.\n", + "\n", + "Parameters:\n", + " job_type (str): The type of job.\n", + " project (str): The project to log to.\n", + " entity (str): The entity to log to.\n", + " tags (list): The tags to log.\n", + " group (str): The group to log to.\n", + " name (str): The name of the run.\n", + " notes (str): The notes to log.\n", + " visualize (bool): Whether to visualize the run.\n", + " complexity_metrics (bool): Whether to log complexity metrics.\n", + " stream_logs (bool): Whether to stream callback actions to W&B\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cxBFfZR8d9FC" + }, + "source": [ + "```\n", + "Default values for WandbCallbackHandler(...)\n", + "\n", + "visualize: bool = False,\n", + "complexity_metrics: bool = False,\n", + "stream_logs: bool = False,\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "NOTE: For beta workflows we have made the default analysis based on textstat and the visualizations based on spacy" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "KAz8weWuUeXF" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mharrison-chase\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n" + ] + }, + { + "data": { + "text/html": [ + "Tracking run with wandb version 0.14.0" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150408-e47j1914" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run llm to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/harrison-chase/langchain_callback_demo" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m The wandb callback is currently in beta and is subject to change based on updates to `langchain`. Please report any issues to https://github.com/wandb/wandb/issues with the tag `langchain`.\n" + ] + } + ], + "source": [ + "\"\"\"Main function.\n", + "\n", + "This function is used to try the callback handler.\n", + "Scenarios:\n", + "1. OpenAI LLM\n", + "2. Chain with multiple SubChains on multiple generations\n", + "3. Agent with Tools\n", + "\"\"\"\n", + "session_group = datetime.now().strftime(\"%m.%d.%Y_%H.%M.%S\")\n", + "wandb_callback = WandbCallbackHandler(\n", + " job_type=\"inference\",\n", + " project=\"langchain_callback_demo\",\n", + " group=f\"minimal_{session_group}\",\n", + " name=\"llm\",\n", + " tags=[\"test\"],\n", + ")\n", + "manager = CallbackManager([StdOutCallbackHandler(), wandb_callback])\n", + "llm = OpenAI(temperature=0, callback_manager=manager, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q-65jwrDeK6w" + }, + "source": [ + "\n", + "\n", + "```\n", + "# Defaults for WandbCallbackHandler.flush_tracker(...)\n", + "\n", + "reset: bool = True,\n", + "finish: bool = False,\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `flush_tracker` function is used to log LangChain sessions to Weights & Biases. It takes in the LangChain module or agent, and logs at minimum the prompts and generations alongside the serialized form of the LangChain module to the specified Weights & Biases project. By default we reset the session as opposed to concluding the session outright." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "o_VmneyIUyx8" + }, + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run llm at: https://wandb.ai/harrison-chase/langchain_callback_demo/runs/e47j1914
Synced 5 W&B file(s), 2 media file(s), 5 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230318_150408-e47j1914/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0d7b4307ccdb450ea631497174fca2d1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016745895149999985, max=1.0…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Tracking run with wandb version 0.14.0" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150534-jyxma7hu" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run simple_sequential to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/harrison-chase/langchain_callback_demo" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# SCENARIO 1 - LLM\n", + "llm_result = llm.generate([\"Tell me a joke\", \"Tell me a poem\"] * 3)\n", + "wandb_callback.flush_tracker(llm, name=\"simple_sequential\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "trxslyb1U28Y" + }, + "outputs": [], + "source": [ + "from langchain.prompts import PromptTemplate\n", + "from langchain.chains import LLMChain" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "uauQk10SUzF6" + }, + "outputs": [ + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run simple_sequential at: https://wandb.ai/harrison-chase/langchain_callback_demo/runs/jyxma7hu
Synced 4 W&B file(s), 2 media file(s), 6 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230318_150534-jyxma7hu/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dbdbf28fb8ed40a3a60218d2e6d1a987", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(Label(value='Waiting for wandb.init()...\\r'), FloatProgress(value=0.016736786816666675, max=1.0…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Tracking run with wandb version 0.14.0" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Run data is saved locally in /Users/harrisonchase/workplace/langchain/docs/ecosystem/wandb/run-20230318_150550-wzy59zjq" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Syncing run agent to Weights & Biases (docs)
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View project at https://wandb.ai/harrison-chase/langchain_callback_demo" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run at https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# SCENARIO 2 - Chain\n", + "template = \"\"\"You are a playwright. Given the title of play, it is your job to write a synopsis for that title.\n", + "Title: {title}\n", + "Playwright: This is a synopsis for the above play:\"\"\"\n", + "prompt_template = PromptTemplate(input_variables=[\"title\"], template=template)\n", + "synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callback_manager=manager)\n", + "\n", + "test_prompts = [\n", + " {\n", + " \"title\": \"documentary about good video games that push the boundary of game design\"\n", + " },\n", + " {\"title\": \"cocaine bear vs heroin wolf\"},\n", + " {\"title\": \"the best in class mlops tooling\"},\n", + "]\n", + "synopsis_chain.apply(test_prompts)\n", + "wandb_callback.flush_tracker(synopsis_chain, name=\"agent\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "_jN73xcPVEpI" + }, + "outputs": [], + "source": [ + "from langchain.agents import initialize_agent, load_tools" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "Gpq4rk6VT9cu" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", + "\u001b[32;1m\u001b[1;3m I need to find out who Leo DiCaprio's girlfriend is and then calculate her age raised to the 0.43 power.\n", + "Action: Search\n", + "Action Input: \"Leo DiCaprio girlfriend\"\u001b[0m\n", + "Observation: \u001b[36;1m\u001b[1;3mDiCaprio had a steady girlfriend in Camila Morrone. He had been with the model turned actress for nearly five years, as they were first said to be dating at the end of 2017. And the now 26-year-old Morrone is no stranger to Hollywood.\u001b[0m\n", + "Thought:\u001b[32;1m\u001b[1;3m I need to calculate her age raised to the 0.43 power.\n", + "Action: Calculator\n", + "Action Input: 26^0.43\u001b[0m\n", + "Observation: \u001b[33;1m\u001b[1;3mAnswer: 4.059182145592686\n", + "\u001b[0m\n", + "Thought:\u001b[32;1m\u001b[1;3m I now know the final answer.\n", + "Final Answer: Leo DiCaprio's girlfriend is Camila Morrone and her current age raised to the 0.43 power is 4.059182145592686.\u001b[0m\n", + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n" + ] + }, + { + "data": { + "text/html": [ + "Waiting for W&B process to finish... (success)." + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + " View run agent at: https://wandb.ai/harrison-chase/langchain_callback_demo/runs/wzy59zjq
Synced 5 W&B file(s), 2 media file(s), 7 artifact file(s) and 0 other file(s)" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "Find logs at: ./wandb/run-20230318_150550-wzy59zjq/logs" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# SCENARIO 3 - Agent with Tools\n", + "tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm, callback_manager=manager)\n", + "agent = initialize_agent(\n", + " tools,\n", + " llm,\n", + " agent=\"zero-shot-react-description\",\n", + " callback_manager=manager,\n", + " verbose=True,\n", + ")\n", + "agent.run(\n", + " \"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?\"\n", + ")\n", + "wandb_callback.flush_tracker(agent, reset=False, finish=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/langchain/callbacks/__init__.py b/langchain/callbacks/__init__.py index 2bc79d6aacf6a..8796409475f8d 100644 --- a/langchain/callbacks/__init__.py +++ b/langchain/callbacks/__init__.py @@ -3,11 +3,16 @@ from contextlib import contextmanager from typing import Generator, Optional -from langchain.callbacks.base import BaseCallbackHandler, BaseCallbackManager +from langchain.callbacks.base import ( + BaseCallbackHandler, + BaseCallbackManager, + CallbackManager, +) from langchain.callbacks.openai_info import OpenAICallbackHandler from langchain.callbacks.shared import SharedCallbackManager from langchain.callbacks.stdout import StdOutCallbackHandler from langchain.callbacks.tracers import SharedLangChainTracer +from langchain.callbacks.wandb_callback import WandbCallbackHandler def get_callback_manager() -> BaseCallbackManager: @@ -58,3 +63,17 @@ def get_openai_callback() -> Generator[OpenAICallbackHandler, None, None]: manager.add_handler(handler) yield handler manager.remove_handler(handler) + + +__all__ = [ + "CallbackManager", + "OpenAICallbackHandler", + "SharedCallbackManager", + "StdOutCallbackHandler", + "WandbCallbackHandler", + "get_openai_callback", + "set_tracing_callback_manager", + "set_default_callback_manager", + "set_handler", + "get_callback_manager", +] diff --git a/langchain/callbacks/wandb_callback.py b/langchain/callbacks/wandb_callback.py new file mode 100644 index 0000000000000..991075146b6e6 --- /dev/null +++ b/langchain/callbacks/wandb_callback.py @@ -0,0 +1,819 @@ +import hashlib +import json +import tempfile +from copy import deepcopy +from pathlib import Path +from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union + +from langchain.callbacks.base import BaseCallbackHandler +from langchain.schema import AgentAction, AgentFinish, LLMResult + + +def import_wandb() -> Any: + try: + import wandb # noqa: F401 + except ImportError: + raise ImportError( + "To use the wandb callback manager you need to have the `wandb` python " + "package installed. Please install it with `pip install wandb`" + ) + return wandb + + +def import_spacy() -> Any: + try: + import spacy # noqa: F401 + except ImportError: + raise ImportError( + "To use the wandb callback manager you need to have the `spacy` python " + "package installed. Please install it with `pip install spacy`" + ) + return spacy + + +def import_pandas() -> Any: + try: + import pandas # noqa: F401 + except ImportError: + raise ImportError( + "To use the wandb callback manager you need to have the `pandas` python " + "package installed. Please install it with `pip install pandas`" + ) + return pandas + + +def import_textstat() -> Any: + try: + import textstat # noqa: F401 + except ImportError: + raise ImportError( + "To use the wandb callback manager you need to have the `textstat` python " + "package installed. Please install it with `pip install textstat`" + ) + return textstat + + +def _flatten_dict( + nested_dict: Dict[str, Any], parent_key: str = "", sep: str = "_" +) -> Iterable[Tuple[str, Any]]: + """ + Generator that yields flattened items from a nested dictionary for a flat dict. + + Parameters: + nested_dict (dict): The nested dictionary to flatten. + parent_key (str): The prefix to prepend to the keys of the flattened dict. + sep (str): The separator to use between the parent key and the key of the + flattened dictionary. + + Yields: + (str, any): A key-value pair from the flattened dictionary. + """ + for key, value in nested_dict.items(): + new_key = parent_key + sep + key if parent_key else key + if isinstance(value, dict): + yield from _flatten_dict(value, new_key, sep) + else: + yield new_key, value + + +def flatten_dict( + nested_dict: Dict[str, Any], parent_key: str = "", sep: str = "_" +) -> Dict[str, Any]: + """Flattens a nested dictionary into a flat dictionary. + + Parameters: + nested_dict (dict): The nested dictionary to flatten. + parent_key (str): The prefix to prepend to the keys of the flattened dict. + sep (str): The separator to use between the parent key and the key of the + flattened dictionary. + + Returns: + (dict): A flat dictionary. + + """ + flat_dict = {k: v for k, v in _flatten_dict(nested_dict, parent_key, sep)} + return flat_dict + + +def hash_string(s: str) -> str: + """Hash a string using sha1. + + Parameters: + s (str): The string to hash. + + Returns: + (str): The hashed string. + """ + return hashlib.sha1(s.encode("utf-8")).hexdigest() + + +def load_json_to_dict(json_path: Union[str, Path]) -> dict: + """Load json file to a dictionary. + + Parameters: + json_path (str): The path to the json file. + + Returns: + (dict): The dictionary representation of the json file. + """ + with open(json_path, "r") as f: + data = json.load(f) + return data + + +def analyze_text( + text: str, + complexity_metrics: bool = True, + visualize: bool = True, + nlp: Any = None, + output_dir: Optional[Union[str, Path]] = None, +) -> dict: + """Analyze text using textstat and spacy. + + Parameters: + text (str): The text to analyze. + complexity_metrics (bool): Whether to compute complexity metrics. + visualize (bool): Whether to visualize the text. + nlp (spacy.lang): The spacy language model to use for visualization. + output_dir (str): The directory to save the visualization files to. + + Returns: + (dict): A dictionary containing the complexity metrics and visualization + files serialized in a wandb.Html element. + """ + resp = {} + textstat = import_textstat() + wandb = import_wandb() + spacy = import_spacy() + if complexity_metrics: + text_complexity_metrics = { + "flesch_reading_ease": textstat.flesch_reading_ease(text), + "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text), + "smog_index": textstat.smog_index(text), + "coleman_liau_index": textstat.coleman_liau_index(text), + "automated_readability_index": textstat.automated_readability_index(text), + "dale_chall_readability_score": textstat.dale_chall_readability_score(text), + "difficult_words": textstat.difficult_words(text), + "linsear_write_formula": textstat.linsear_write_formula(text), + "gunning_fog": textstat.gunning_fog(text), + "text_standard": textstat.text_standard(text), + "fernandez_huerta": textstat.fernandez_huerta(text), + "szigriszt_pazos": textstat.szigriszt_pazos(text), + "gutierrez_polini": textstat.gutierrez_polini(text), + "crawford": textstat.crawford(text), + "gulpease_index": textstat.gulpease_index(text), + "osman": textstat.osman(text), + } + resp.update(text_complexity_metrics) + + if visualize and nlp and output_dir is not None: + doc = nlp(text) + + dep_out = spacy.displacy.render( # type: ignore + doc, style="dep", jupyter=False, page=True + ) + dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html") + dep_output_path.open("w", encoding="utf-8").write(dep_out) + + ent_out = spacy.displacy.render( # type: ignore + doc, style="ent", jupyter=False, page=True + ) + ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html") + ent_output_path.open("w", encoding="utf-8").write(ent_out) + + text_visualizations = { + "dependency_tree": wandb.Html(str(dep_output_path)), + "entities": wandb.Html(str(ent_output_path)), + } + resp.update(text_visualizations) + + return resp + + +def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any: + """Construct an html element from a prompt and a generation. + + Parameters: + prompt (str): The prompt. + generation (str): The generation. + + Returns: + (wandb.Html): The html element.""" + wandb = import_wandb() + formatted_prompt = prompt.replace("\n", "
") + formatted_generation = generation.replace("\n", "
") + + return wandb.Html( + f""" +

{formatted_prompt}:

+
+

+ {formatted_generation} +

+
+ """, + inject=False, + ) + + +class BaseMetadataCallbackHandler: + """This class handles the metadata and associated function states for callbacks. + + Attributes: + step (int): The current step. + starts (int): The number of times the start method has been called. + ends (int): The number of times the end method has been called. + errors (int): The number of times the error method has been called. + text_ctr (int): The number of times the text method has been called. + ignore_llm_ (bool): Whether to ignore llm callbacks. + ignore_chain_ (bool): Whether to ignore chain callbacks. + ignore_agent_ (bool): Whether to ignore agent callbacks. + always_verbose_ (bool): Whether to always be verbose. + chain_starts (int): The number of times the chain start method has been called. + chain_ends (int): The number of times the chain end method has been called. + llm_starts (int): The number of times the llm start method has been called. + llm_ends (int): The number of times the llm end method has been called. + llm_streams (int): The number of times the text method has been called. + tool_starts (int): The number of times the tool start method has been called. + tool_ends (int): The number of times the tool end method has been called. + agent_ends (int): The number of times the agent end method has been called. + on_llm_start_records (list): A list of records of the on_llm_start method. + on_llm_token_records (list): A list of records of the on_llm_token method. + on_llm_end_records (list): A list of records of the on_llm_end method. + on_chain_start_records (list): A list of records of the on_chain_start method. + on_chain_end_records (list): A list of records of the on_chain_end method. + on_tool_start_records (list): A list of records of the on_tool_start method. + on_tool_end_records (list): A list of records of the on_tool_end method. + on_agent_finish_records (list): A list of records of the on_agent_end method. + """ + + def __init__(self) -> None: + self.step = 0 + + self.starts = 0 + self.ends = 0 + self.errors = 0 + self.text_ctr = 0 + + self.ignore_llm_ = False + self.ignore_chain_ = False + self.ignore_agent_ = False + self.always_verbose_ = False + + self.chain_starts = 0 + self.chain_ends = 0 + + self.llm_starts = 0 + self.llm_ends = 0 + self.llm_streams = 0 + + self.tool_starts = 0 + self.tool_ends = 0 + + self.agent_ends = 0 + + self.on_llm_start_records: list = [] + self.on_llm_token_records: list = [] + self.on_llm_end_records: list = [] + + self.on_chain_start_records: list = [] + self.on_chain_end_records: list = [] + + self.on_tool_start_records: list = [] + self.on_tool_end_records: list = [] + + self.on_text_records: list = [] + self.on_agent_finish_records: list = [] + self.on_agent_action_records: list = [] + + @property + def always_verbose(self) -> bool: + """Whether to call verbose callbacks even if verbose is False.""" + return self.always_verbose_ + + @property + def ignore_llm(self) -> bool: + """Whether to ignore LLM callbacks.""" + return self.ignore_llm_ + + @property + def ignore_chain(self) -> bool: + """Whether to ignore chain callbacks.""" + return self.ignore_chain_ + + @property + def ignore_agent(self) -> bool: + """Whether to ignore agent callbacks.""" + return self.ignore_agent_ + + def get_custom_callback_meta(self) -> Dict[str, Any]: + return { + "step": self.step, + "starts": self.starts, + "ends": self.ends, + "errors": self.errors, + "text_ctr": self.text_ctr, + "chain_starts": self.chain_starts, + "chain_ends": self.chain_ends, + "llm_starts": self.llm_starts, + "llm_ends": self.llm_ends, + "llm_streams": self.llm_streams, + "tool_starts": self.tool_starts, + "tool_ends": self.tool_ends, + "agent_ends": self.agent_ends, + } + + def reset_callback_meta(self) -> None: + """Reset the callback metadata.""" + self.step = 0 + + self.starts = 0 + self.ends = 0 + self.errors = 0 + self.text_ctr = 0 + + self.ignore_llm_ = False + self.ignore_chain_ = False + self.ignore_agent_ = False + self.always_verbose_ = False + + self.chain_starts = 0 + self.chain_ends = 0 + + self.llm_starts = 0 + self.llm_ends = 0 + self.llm_streams = 0 + + self.tool_starts = 0 + self.tool_ends = 0 + + self.agent_ends = 0 + + self.on_llm_start_records = [] + self.on_llm_token_records = [] + self.on_llm_end_records = [] + + self.on_chain_start_records = [] + self.on_chain_end_records = [] + + self.on_tool_start_records = [] + self.on_tool_end_records = [] + + self.on_text_records = [] + self.on_agent_finish_records = [] + self.on_agent_action_records = [] + return None + + +class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler): + """Callback Handler that logs to Weights and Biases. + + Parameters: + job_type (str): The type of job. + project (str): The project to log to. + entity (str): The entity to log to. + tags (list): The tags to log. + group (str): The group to log to. + name (str): The name of the run. + notes (str): The notes to log. + visualize (bool): Whether to visualize the run. + complexity_metrics (bool): Whether to log complexity metrics. + stream_logs (bool): Whether to stream callback actions to W&B + + This handler will utilize the associated callback method called and formats + the input of each callback function with metadata regarding the state of LLM run, + and adds the response to the list of records for both the {method}_records and + action. It then logs the response using the run.log() method to Weights and Biases. + """ + + def __init__( + self, + job_type: Optional[str] = None, + project: Optional[str] = "langchain_callback_demo", + entity: Optional[str] = None, + tags: Optional[Sequence] = None, + group: Optional[str] = None, + name: Optional[str] = None, + notes: Optional[str] = None, + visualize: bool = False, + complexity_metrics: bool = False, + stream_logs: bool = False, + ) -> None: + """Initialize callback handler.""" + + wandb = import_wandb() + import_pandas() + import_textstat() + spacy = import_spacy() + super().__init__() + + self.job_type = job_type + self.project = project + self.entity = entity + self.tags = tags + self.group = group + self.name = name + self.notes = notes + self.visualize = visualize + self.complexity_metrics = complexity_metrics + self.stream_logs = stream_logs + + self.temp_dir = tempfile.TemporaryDirectory() + self.run: wandb.sdk.wandb_run.Run = wandb.init( # type: ignore + job_type=self.job_type, + project=self.project, + entity=self.entity, + tags=self.tags, + group=self.group, + name=self.name, + notes=self.notes, + ) + warning = ( + "The wandb callback is currently in beta and is subject to change " + "based on updates to `langchain`. Please report any issues to " + "https://github.com/wandb/wandb/issues with the tag `langchain`." + ) + wandb.termwarn( + warning, + repeat=False, + ) + self.callback_columns: list = [] + self.action_records: list = [] + self.complexity_metrics = complexity_metrics + self.visualize = visualize + self.nlp = spacy.load("en_core_web_sm") + + def _init_resp(self) -> Dict: + return {k: None for k in self.callback_columns} + + def on_llm_start( + self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any + ) -> None: + """Run when LLM starts.""" + self.step += 1 + self.llm_starts += 1 + self.starts += 1 + + resp = self._init_resp() + resp.update({"action": "on_llm_start"}) + resp.update(flatten_dict(serialized)) + resp.update(self.get_custom_callback_meta()) + + for prompt in prompts: + prompt_resp = deepcopy(resp) + prompt_resp["prompts"] = prompt + self.on_llm_start_records.append(prompt_resp) + self.action_records.append(prompt_resp) + if self.stream_logs: + self.run.log(prompt_resp) + + def on_llm_new_token(self, token: str, **kwargs: Any) -> None: + """Run when LLM generates a new token.""" + self.step += 1 + self.llm_streams += 1 + + resp = self._init_resp() + resp.update({"action": "on_llm_new_token", "token": token}) + resp.update(self.get_custom_callback_meta()) + + self.on_llm_token_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: + """Run when LLM ends running.""" + self.step += 1 + self.llm_ends += 1 + self.ends += 1 + + resp = self._init_resp() + resp.update({"action": "on_llm_end"}) + resp.update(flatten_dict(response.llm_output or {})) + resp.update(self.get_custom_callback_meta()) + + for generations in response.generations: + for generation in generations: + generation_resp = deepcopy(resp) + generation_resp.update(flatten_dict(generation.dict())) + generation_resp.update( + analyze_text( + generation.text, + complexity_metrics=self.complexity_metrics, + visualize=self.visualize, + nlp=self.nlp, + output_dir=self.temp_dir.name, + ) + ) + self.on_llm_end_records.append(generation_resp) + self.action_records.append(generation_resp) + if self.stream_logs: + self.run.log(generation_resp) + + def on_llm_error( + self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any + ) -> None: + """Run when LLM errors.""" + self.step += 1 + self.errors += 1 + + def on_chain_start( + self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any + ) -> None: + """Run when chain starts running.""" + self.step += 1 + self.chain_starts += 1 + self.starts += 1 + + resp = self._init_resp() + resp.update({"action": "on_chain_start"}) + resp.update(flatten_dict(serialized)) + resp.update(self.get_custom_callback_meta()) + + chain_input = inputs["input"] + + if isinstance(chain_input, str): + input_resp = deepcopy(resp) + input_resp["input"] = chain_input + self.on_chain_start_records.append(input_resp) + self.action_records.append(input_resp) + if self.stream_logs: + self.run.log(input_resp) + elif isinstance(chain_input, list): + for inp in chain_input: + input_resp = deepcopy(resp) + input_resp.update(inp) + self.on_chain_start_records.append(input_resp) + self.action_records.append(input_resp) + if self.stream_logs: + self.run.log(input_resp) + else: + raise ValueError("Unexpected data format provided!") + + def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None: + """Run when chain ends running.""" + self.step += 1 + self.chain_ends += 1 + self.ends += 1 + + resp = self._init_resp() + resp.update({"action": "on_chain_end", "outputs": outputs["output"]}) + resp.update(self.get_custom_callback_meta()) + + self.on_chain_end_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def on_chain_error( + self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any + ) -> None: + """Run when chain errors.""" + self.step += 1 + self.errors += 1 + + def on_tool_start( + self, serialized: Dict[str, Any], input_str: str, **kwargs: Any + ) -> None: + """Run when tool starts running.""" + self.step += 1 + self.tool_starts += 1 + self.starts += 1 + + resp = self._init_resp() + resp.update({"action": "on_tool_start", "input_str": input_str}) + resp.update(flatten_dict(serialized)) + resp.update(self.get_custom_callback_meta()) + + self.on_tool_start_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def on_tool_end(self, output: str, **kwargs: Any) -> None: + """Run when tool ends running.""" + self.step += 1 + self.tool_ends += 1 + self.ends += 1 + + resp = self._init_resp() + resp.update({"action": "on_tool_end", "output": output}) + resp.update(self.get_custom_callback_meta()) + + self.on_tool_end_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def on_tool_error( + self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any + ) -> None: + """Run when tool errors.""" + self.step += 1 + self.errors += 1 + + def on_text(self, text: str, **kwargs: Any) -> None: + """ + Run when agent is ending. + """ + self.step += 1 + self.text_ctr += 1 + + resp = self._init_resp() + resp.update({"action": "on_text", "text": text}) + resp.update(self.get_custom_callback_meta()) + + self.on_text_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None: + """Run when agent ends running.""" + self.step += 1 + self.agent_ends += 1 + self.ends += 1 + + resp = self._init_resp() + resp.update( + { + "action": "on_agent_finish", + "output": finish.return_values["output"], + "log": finish.log, + } + ) + resp.update(self.get_custom_callback_meta()) + + self.on_agent_finish_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any: + """Run on agent action.""" + self.step += 1 + self.tool_starts += 1 + self.starts += 1 + + resp = self._init_resp() + resp.update( + { + "action": "on_agent_action", + "tool": action.tool, + "tool_input": action.tool_input, + "log": action.log, + } + ) + resp.update(self.get_custom_callback_meta()) + self.on_agent_action_records.append(resp) + self.action_records.append(resp) + if self.stream_logs: + self.run.log(resp) + + def _create_session_analysis_df(self) -> Any: + """Create a dataframe with all the information from the session.""" + pd = import_pandas() + on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records) + on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records) + + llm_input_prompts_df = ( + on_llm_start_records_df[["step", "prompts", "name"]] + .dropna(axis=1) + .rename({"step": "prompt_step"}, axis=1) + ) + complexity_metrics_columns = [] + visualizations_columns = [] + + if self.complexity_metrics: + complexity_metrics_columns = [ + "flesch_reading_ease", + "flesch_kincaid_grade", + "smog_index", + "coleman_liau_index", + "automated_readability_index", + "dale_chall_readability_score", + "difficult_words", + "linsear_write_formula", + "gunning_fog", + "text_standard", + "fernandez_huerta", + "szigriszt_pazos", + "gutierrez_polini", + "crawford", + "gulpease_index", + "osman", + ] + + if self.visualize: + visualizations_columns = ["dependency_tree", "entities"] + + llm_outputs_df = ( + on_llm_end_records_df[ + [ + "step", + "text", + "token_usage_total_tokens", + "token_usage_prompt_tokens", + "token_usage_completion_tokens", + ] + + complexity_metrics_columns + + visualizations_columns + ] + .dropna(axis=1) + .rename({"step": "output_step", "text": "output"}, axis=1) + ) + session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1) + session_analysis_df["chat_html"] = session_analysis_df[ + ["prompts", "output"] + ].apply( + lambda row: construct_html_from_prompt_and_generation( + row["prompts"], row["output"] + ), + axis=1, + ) + return session_analysis_df + + def flush_tracker( + self, + langchain_asset: Any = None, + reset: bool = True, + finish: bool = False, + job_type: Optional[str] = None, + project: Optional[str] = None, + entity: Optional[str] = None, + tags: Optional[Sequence] = None, + group: Optional[str] = None, + name: Optional[str] = None, + notes: Optional[str] = None, + visualize: Optional[bool] = None, + complexity_metrics: Optional[bool] = None, + ) -> None: + """Flush the tracker and reset the session. + + Args: + langchain_asset: The langchain asset to save. + reset: Whether to reset the session. + finish: Whether to finish the run. + job_type: The job type. + project: The project. + entity: The entity. + tags: The tags. + group: The group. + name: The name. + notes: The notes. + visualize: Whether to visualize. + complexity_metrics: Whether to compute complexity metrics. + + Returns: + None + """ + pd = import_pandas() + wandb = import_wandb() + action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records)) + session_analysis_table = wandb.Table( + dataframe=self._create_session_analysis_df() + ) + self.run.log( + { + "action_records": action_records_table, + "session_analysis": session_analysis_table, + } + ) + + if langchain_asset: + langchain_asset_path = Path(self.temp_dir.name, "model.json") + model_artifact = wandb.Artifact(name="model", type="model") + model_artifact.add(action_records_table, name="action_records") + model_artifact.add(session_analysis_table, name="session_analysis") + try: + langchain_asset.save(langchain_asset_path) + model_artifact.add_file(str(langchain_asset_path)) + model_artifact.metadata = load_json_to_dict(langchain_asset_path) + except ValueError: + langchain_asset.save_agent(langchain_asset_path) + model_artifact.add_file(str(langchain_asset_path)) + model_artifact.metadata = load_json_to_dict(langchain_asset_path) + except NotImplementedError as e: + print("Could not save model.") + print(repr(e)) + pass + self.run.log_artifact(model_artifact) + + if finish or reset: + self.run.finish() + self.temp_dir.cleanup() + self.reset_callback_meta() + if reset: + self.__init__( # type: ignore + job_type=job_type if job_type else self.job_type, + project=project if project else self.project, + entity=entity if entity else self.entity, + tags=tags if tags else self.tags, + group=group if group else self.group, + name=name if name else self.name, + notes=notes if notes else self.notes, + visualize=visualize if visualize else self.visualize, + complexity_metrics=complexity_metrics + if complexity_metrics + else self.complexity_metrics, + )