-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcrossValidation.R
85 lines (65 loc) · 2.38 KB
/
crossValidation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#Cross validation and Resampling Techniques
require(ISLR)
#boot package for the Cross valiadation
require(boot)
?cv.glm
#this is the K-fold cross validation for the generalized linear models
data("Auto")
attach(Auto)
plot(mpg ,horsepower)
#both have a negetive correlation as mpg increase the HP decreases
#Leave one Out CV-LOOCV
mod1<-glm(mpg ~ horsepower )
summary(mod1)
#delta is the CV error
cv.glm(Auto,mod1)$delta #pretty slow , leavs one data point and fits a model
# on the remaining data points , then tests on the 1 point
#Let's write a formula to compite the Prediction error for LOOCV
loocv<-function(fit)
{
h = lm.influence(fit)$h
mean((residuals(fit)/(1-h))^2)
#hence it will compute the error , h=diagonal element of the hat matrix
#hat matrix is the operator matrix which produces the least square fit
}
#let's now try out the function
loocv(mod1)
#it will return the CV error directly
#Now lets try out LOOCV for different polynomials(higher degree regression)
cv.error = rep(0,5)
#cv.error is a empty vector initiaized with 5 as size to collect error of each Model
degree=1:5
for(d in degree)
{
model<-glm(mpg ~ poly(horsepower,d),data = Auto)
cv.error[d] = loocv(model)
}
#Plot of degree(K) vs Cross Validation errors for each Different Model with
#different degrees
plot(x = degree , y = cv.error,type='b' ,title="Cross validation error for different degrees",xlab = "Degree",ylab = "Cross validation error")
#Hence Quadratic Model did a very good job with less CV error
# along with degree 5
#10 fold cross validation
cv.error10 = rep(0,5)
for(d in degree)
{
mod<-glm(mpg~poly(horsepower,d),data = Auto)
cv.error10[d] = cv.glm(Auto, mod, K=10)$delta[1]
}
plot(degree, cv.error10,type='b',col='red',xlab="Degree of polynomial",ylab ="10 fold CV error vs 5 fold")
#Hence we can see that Model with quadratic degree is the best one with least
# Cv error , hence we will choose the Model 2 with degree 2
#10 fold is usually more computationally simpler than LOOCV and also 10 considers
# Bias-Variance tradeoffs
mod2<-glm(mpg ~ poly(horsepower,2), data = Auto)
#5-fold CV
cv.glm(Auto,mod2,K=5)$delta
cv.error5 = rep(0,5)
for(d in degree)
{
mod<-glm(mpg ~ poly(horsepower,d),data =Auto)
cv.error5[d] = cv.glm(Auto , mod , K=5)$delta[1]
}
lines(degree, cv.error5 , col = 'blue',type= 'b')
#adding legends
legend("topright", c("5-fold CV","10-fold CV"),col=c("blue","red"),pch=19)