-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathK-NN.R
79 lines (50 loc) · 2.13 KB
/
K-NN.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#IMPLEMENTING K-NN(LAZY LEARNER) IN R
#K-NN is a lazy learner and a Simple algorithm , but works good most of the times due to
#the simple inductive bias it has.
#We find out the closest neighbouring points(Xi) to the Query(test) point 'q' using a
#Distance metric and classify to that point -Nearest Neighbour in training data,for k=1
#package for k-NN
require(ISLR)
library(class)
library(dplyr)
?knn
#Classifiaction of Smarket Data set
attach(Smarket)
#Training Data Set-consisting of Predictors Lag1 and Lag2
Smarket %>% filter(Year < 2005) %>%
select(Lag1,Lag2) ->train_set
#Test Data Set
Smarket %>% filter(Year == 2005) %>%
select(Lag1,Lag2) ->test_set
model1<-knn(train_set,test_set ,Direction[Year<2005],k=1)
#model1 returns some class labels for the Test points=test_set using Euclidean distance
head(model1)
#accuracy of the model-CONFUSION MATRIX
table(Predicted=model1,True=Direction[Year==2005])
#True positives and negetives and perfomance of the model
mean(model1==Direction[Year==2005])
#for 1-NN , accuracy is 50% and error=50% , Poor perfomance
#Model2-3-NN
model2<-knn(train_set,test_set ,Direction[Year<2005],k=3)
table(Predicted=model2,True=Direction[Year==2005])
#True positives and negetives and perfomance of the model
mean(model2==Direction[Year==2005])
#accuracy improved to 53%, i.e does slightly better than chance. as Error<50%
#Model3-
model3<-knn(train_set,test_set ,Direction[Year<2005],k=100)
table(Predicted=model3,True=Direction[Year==2005])
#True positives and negetives and perfomance of the model
mean(model3==Direction[Year==2005])
#NOTE-100 NN gives accuracy of 54%
#Model4- 200-NN
model4<-knn(train_set,test_set ,Direction[Year<2005],k=200)
table(Predicted=model4,True=Direction[Year==2005])
#True positives and negetives and perfomance of the model
mean(model4==Direction[Year==2005])
#200-NN set gives accuracy of 57%
#MODEL-5,
model5<-knn(train_set,test_set ,Direction[Year<2005],k=300)
table(Predicted=model5,True=Direction[Year==2005])
#True positives and negetives and perfomance of the model
mean(model5==Direction[Year==2005])
#300-NN gives accuracy of 61%(highest)