-
Notifications
You must be signed in to change notification settings - Fork 27
/
clean_data.py
66 lines (50 loc) · 2.11 KB
/
clean_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Load libraries
import pandas as pd
import string
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
URL_DATA = r'\data\products_description.csv'
CLEANED_DATA_PATH = r'data\products_clean.csv'
def grouping_data(df: pd.DataFrame) -> pd.DataFrame:
"""Group data to a smaller number of categories"""
df.loc[df['product_type'].isin(['lipstick', 'lip_liner']), 'product_type'] = 'lipstick'
df.loc[df['product_type'].isin(['blush', 'bronzer']), 'product_type'] = 'contour'
df.loc[df['product_type'].isin(['eyeliner', 'eyeshadow', 'mascara', 'eyebrow']), 'product_type'] = 'eye_makeup'
return df
def remove_punctuation(description: str) -> str:
"""Function to remove punctuation"""
table = str.maketrans('', '', string.punctuation)
return description.translate(table)
def remove_stopwords(text: str) -> str:
"""Function to remove stopwords"""
stop = stopwords.words('english')
text = [word.lower() for word in text.split() if word.lower() not in stop]
return " ".join(text)
def stemmer(stem_text: str) -> str:
"""Function to apply stemming"""
porter = PorterStemmer()
stem_text = [porter.stem(word) for word in stem_text.split()]
return " ".join(stem_text)
def preprocess_data(text_data: str) -> str:
"""Function to preprocess data"""
data = grouping_data(text_data)
data['description'] = data['description'].astype(str)
data['description'] = data['description'].apply(remove_punctuation)
data['description'] = data['description'].apply(remove_stopwords)
data['description'] = data['description'].apply(stemmer)
return data
def read_data(path: str) -> pd.DataFrame:
"""Function to read data"""
try:
df = pd.read_csv(path, header=0, index_col=0)
return df
except Exception as e:
print(f"Error loading data: {str(e)}")
return pd.DataFrame()
if __name__ == '__main__':
data = read_data(URL_DATA)
data_clean = preprocess_data(data)
if not data_clean.empty:
print(data_clean.shape)
print(data_clean.head(5))
data_clean.to_csv(CLEANED_DATA_PATH, encoding='utf-8')