forked from MahmoudAshraf97/whisper-diarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
helpers.py
392 lines (324 loc) · 12.3 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import os
import wget
from omegaconf import OmegaConf
import json
import shutil
import nltk
from whisperx.alignment import DEFAULT_ALIGN_MODELS_HF, DEFAULT_ALIGN_MODELS_TORCH
import logging
from whisperx.utils import LANGUAGES, TO_LANGUAGE_CODE
punct_model_langs = [
"en",
"fr",
"de",
"es",
"it",
"nl",
"pt",
"bg",
"pl",
"cs",
"sk",
"sl",
]
wav2vec2_langs = list(DEFAULT_ALIGN_MODELS_TORCH.keys()) + list(
DEFAULT_ALIGN_MODELS_HF.keys()
)
whisper_langs = sorted(LANGUAGES.keys()) + sorted(
[k.title() for k in TO_LANGUAGE_CODE.keys()]
)
def create_config(output_dir):
DOMAIN_TYPE = "telephonic" # Can be meeting, telephonic, or general based on domain type of the audio file
CONFIG_LOCAL_DIRECTORY = "nemo_msdd_configs"
CONFIG_FILE_NAME = f"diar_infer_{DOMAIN_TYPE}.yaml"
MODEL_CONFIG_PATH = os.path.join(CONFIG_LOCAL_DIRECTORY, CONFIG_FILE_NAME)
if not os.path.exists(MODEL_CONFIG_PATH):
os.makedirs(CONFIG_LOCAL_DIRECTORY, exist_ok=True)
CONFIG_URL = f"https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/speaker_tasks/diarization/conf/inference/{CONFIG_FILE_NAME}"
MODEL_CONFIG_PATH = wget.download(CONFIG_URL, MODEL_CONFIG_PATH)
config = OmegaConf.load(MODEL_CONFIG_PATH)
data_dir = os.path.join(output_dir, "data")
os.makedirs(data_dir, exist_ok=True)
meta = {
"audio_filepath": os.path.join(output_dir, "mono_file.wav"),
"offset": 0,
"duration": None,
"label": "infer",
"text": "-",
"rttm_filepath": None,
"uem_filepath": None,
}
with open(os.path.join(data_dir, "input_manifest.json"), "w") as fp:
json.dump(meta, fp)
fp.write("\n")
pretrained_vad = "vad_multilingual_marblenet"
pretrained_speaker_model = "titanet_large"
config.num_workers = 0
config.diarizer.manifest_filepath = os.path.join(data_dir, "input_manifest.json")
config.diarizer.out_dir = (
output_dir # Directory to store intermediate files and prediction outputs
)
config.diarizer.speaker_embeddings.model_path = pretrained_speaker_model
config.diarizer.oracle_vad = (
False # compute VAD provided with model_path to vad config
)
config.diarizer.clustering.parameters.oracle_num_speakers = False
# Here, we use our in-house pretrained NeMo VAD model
config.diarizer.vad.model_path = pretrained_vad
config.diarizer.vad.parameters.onset = 0.8
config.diarizer.vad.parameters.offset = 0.6
config.diarizer.vad.parameters.pad_offset = -0.05
config.diarizer.msdd_model.model_path = (
"diar_msdd_telephonic" # Telephonic speaker diarization model
)
return config
def get_word_ts_anchor(s, e, option="start"):
if option == "end":
return e
elif option == "mid":
return (s + e) / 2
return s
def get_words_speaker_mapping(wrd_ts, spk_ts, word_anchor_option="start"):
s, e, sp = spk_ts[0]
wrd_pos, turn_idx = 0, 0
wrd_spk_mapping = []
for wrd_dict in wrd_ts:
ws, we, wrd = (
int(wrd_dict["start"] * 1000),
int(wrd_dict["end"] * 1000),
wrd_dict["word"],
)
wrd_pos = get_word_ts_anchor(ws, we, word_anchor_option)
while wrd_pos > float(e):
turn_idx += 1
turn_idx = min(turn_idx, len(spk_ts) - 1)
s, e, sp = spk_ts[turn_idx]
if turn_idx == len(spk_ts) - 1:
e = get_word_ts_anchor(ws, we, option="end")
wrd_spk_mapping.append(
{"word": wrd, "start_time": ws, "end_time": we, "speaker": sp}
)
return wrd_spk_mapping
sentence_ending_punctuations = ".?!"
def get_first_word_idx_of_sentence(word_idx, word_list, speaker_list, max_words):
is_word_sentence_end = (
lambda x: x >= 0 and word_list[x][-1] in sentence_ending_punctuations
)
left_idx = word_idx
while (
left_idx > 0
and word_idx - left_idx < max_words
and speaker_list[left_idx - 1] == speaker_list[left_idx]
and not is_word_sentence_end(left_idx - 1)
):
left_idx -= 1
return left_idx if left_idx == 0 or is_word_sentence_end(left_idx - 1) else -1
def get_last_word_idx_of_sentence(word_idx, word_list, max_words):
is_word_sentence_end = (
lambda x: x >= 0 and word_list[x][-1] in sentence_ending_punctuations
)
right_idx = word_idx
while (
right_idx < len(word_list)
and right_idx - word_idx < max_words
and not is_word_sentence_end(right_idx)
):
right_idx += 1
return (
right_idx
if right_idx == len(word_list) - 1 or is_word_sentence_end(right_idx)
else -1
)
def get_realigned_ws_mapping_with_punctuation(
word_speaker_mapping, max_words_in_sentence=50
):
is_word_sentence_end = (
lambda x: x >= 0
and word_speaker_mapping[x]["word"][-1] in sentence_ending_punctuations
)
wsp_len = len(word_speaker_mapping)
words_list, speaker_list = [], []
for k, line_dict in enumerate(word_speaker_mapping):
word, speaker = line_dict["word"], line_dict["speaker"]
words_list.append(word)
speaker_list.append(speaker)
k = 0
while k < len(word_speaker_mapping):
line_dict = word_speaker_mapping[k]
if (
k < wsp_len - 1
and speaker_list[k] != speaker_list[k + 1]
and not is_word_sentence_end(k)
):
left_idx = get_first_word_idx_of_sentence(
k, words_list, speaker_list, max_words_in_sentence
)
right_idx = (
get_last_word_idx_of_sentence(
k, words_list, max_words_in_sentence - k + left_idx - 1
)
if left_idx > -1
else -1
)
if min(left_idx, right_idx) == -1:
k += 1
continue
spk_labels = speaker_list[left_idx : right_idx + 1]
mod_speaker = max(set(spk_labels), key=spk_labels.count)
if spk_labels.count(mod_speaker) < len(spk_labels) // 2:
k += 1
continue
speaker_list[left_idx : right_idx + 1] = [mod_speaker] * (
right_idx - left_idx + 1
)
k = right_idx
k += 1
k, realigned_list = 0, []
while k < len(word_speaker_mapping):
line_dict = word_speaker_mapping[k].copy()
line_dict["speaker"] = speaker_list[k]
realigned_list.append(line_dict)
k += 1
return realigned_list
def get_sentences_speaker_mapping(word_speaker_mapping, spk_ts):
sentence_checker = nltk.tokenize.PunktSentenceTokenizer().text_contains_sentbreak
s, e, spk = spk_ts[0]
prev_spk = spk
snts = []
snt = {"speaker": f"Speaker {spk}", "start_time": s, "end_time": e, "text": ""}
for wrd_dict in word_speaker_mapping:
wrd, spk = wrd_dict["word"], wrd_dict["speaker"]
s, e = wrd_dict["start_time"], wrd_dict["end_time"]
if spk != prev_spk or sentence_checker(snt["text"] + " " + wrd):
snts.append(snt)
snt = {
"speaker": f"Speaker {spk}",
"start_time": s,
"end_time": e,
"text": "",
}
else:
snt["end_time"] = e
snt["text"] += wrd + " "
prev_spk = spk
snts.append(snt)
return snts
def get_speaker_aware_transcript(sentences_speaker_mapping, f):
previous_speaker = sentences_speaker_mapping[0]["speaker"]
f.write(f"{previous_speaker}: ")
for sentence_dict in sentences_speaker_mapping:
speaker = sentence_dict["speaker"]
sentence = sentence_dict["text"]
# If this speaker doesn't match the previous one, start a new paragraph
if speaker != previous_speaker:
f.write(f"\n\n{speaker}: ")
previous_speaker = speaker
# No matter what, write the current sentence
f.write(sentence + " ")
def format_timestamp(
milliseconds: float, always_include_hours: bool = False, decimal_marker: str = "."
):
assert milliseconds >= 0, "non-negative timestamp expected"
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return (
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
)
def write_srt(transcript, file):
"""
Write a transcript to a file in SRT format.
"""
for i, segment in enumerate(transcript, start=1):
# write srt lines
print(
f"{i}\n"
f"{format_timestamp(segment['start_time'], always_include_hours=True, decimal_marker=',')} --> "
f"{format_timestamp(segment['end_time'], always_include_hours=True, decimal_marker=',')}\n"
f"{segment['speaker']}: {segment['text'].strip().replace('-->', '->')}\n",
file=file,
flush=True,
)
def find_numeral_symbol_tokens(tokenizer):
numeral_symbol_tokens = [
-1,
]
for token, token_id in tokenizer.get_vocab().items():
has_numeral_symbol = any(c in "0123456789%$£" for c in token)
if has_numeral_symbol:
numeral_symbol_tokens.append(token_id)
return numeral_symbol_tokens
def _get_next_start_timestamp(word_timestamps, current_word_index, final_timestamp):
# if current word is the last word
if current_word_index == len(word_timestamps) - 1:
return word_timestamps[current_word_index]["start"]
next_word_index = current_word_index + 1
while current_word_index < len(word_timestamps) - 1:
if word_timestamps[next_word_index].get("start") is None:
# if next word doesn't have a start timestamp
# merge it with the current word and delete it
word_timestamps[current_word_index]["word"] += (
" " + word_timestamps[next_word_index]["word"]
)
word_timestamps[next_word_index]["word"] = None
next_word_index += 1
if next_word_index == len(word_timestamps):
return final_timestamp
else:
return word_timestamps[next_word_index]["start"]
def filter_missing_timestamps(
word_timestamps, initial_timestamp=0, final_timestamp=None
):
# handle the first and last word
if word_timestamps[0].get("start") is None:
word_timestamps[0]["start"] = (
initial_timestamp if initial_timestamp is not None else 0
)
word_timestamps[0]["end"] = _get_next_start_timestamp(
word_timestamps, 0, final_timestamp
)
result = [
word_timestamps[0],
]
for i, ws in enumerate(word_timestamps[1:], start=1):
# if ws doesn't have a start and end
# use the previous end as start and next start as end
if ws.get("start") is None and ws.get("word") is not None:
ws["start"] = word_timestamps[i - 1]["end"]
ws["end"] = _get_next_start_timestamp(word_timestamps, i, final_timestamp)
if ws["word"] is not None:
result.append(ws)
return result
def cleanup(path: str):
"""path could either be relative or absolute."""
# check if file or directory exists
if os.path.isfile(path) or os.path.islink(path):
# remove file
os.remove(path)
elif os.path.isdir(path):
# remove directory and all its content
shutil.rmtree(path)
else:
raise ValueError("Path {} is not a file or dir.".format(path))
def process_language_arg(language: str, model_name: str):
"""
Process the language argument to make sure it's valid and convert language names to language codes.
"""
if language is not None:
language = language.lower()
if language not in LANGUAGES:
if language in TO_LANGUAGE_CODE:
language = TO_LANGUAGE_CODE[language]
else:
raise ValueError(f"Unsupported language: {language}")
if model_name.endswith(".en") and language != "en":
if language is not None:
logging.warning(
f"{model_name} is an English-only model but received '{language}'; using English instead."
)
language = "en"
return language