-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfvt.py
executable file
·132 lines (99 loc) · 3.17 KB
/
fvt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
# encoding: utf-8
"""
fvt.py
Copyright (c) 2010 Piick.com, Inc. All rights reserved.
"""
from lxml import etree
class Node(object):
def __init__(self, el=None):
if el is not None:
self.value = el.tag
self.children = []
self.size = 1
if el.text and el.text.strip():
text_node = Node()
text_node.value = el.text.strip()
self.children.append(text_node)
self.size += text_node.size
for c in el:
n = Node(c)
self.children.append(n)
self.size += n.size
if c.tail and c.tail.strip():
tail_node = Node()
tail_node.value = c.tail.strip()
self.children.append(tail_node)
self.size += tail_node.size
else:
self.children = []
self.value = None
self.size = 1
def __eq__(self, other):
return self.value == other.value
def __ne__(self, other):
return not self.__eq__(other)
def __iter__(self):
for c in self.children:
yield c
def __len__(self):
return len(self.children)
def iter(self):
yield self
for c in self.children:
for n in c.iter():
yield n
def tree_matching(A,B):
M = [[0.0 for j in xrange(len(B) + 1)] for i in xrange(len(A) + 1)]
for i, a in enumerate(A, 1):
for j, b in enumerate(B, 1):
M[i][j] = max(M[i][j-1], M[i-1][j], M[i-1][j-1] + tree_matching(a, b))
return M[len(A)][len(B)] + (1 if A == B else 0)
def fiva_tree_match_score(A, B):
if A != B:
return 0
if not len(A) or not len(B) or len(A) == len(B):
return 2 * tree_matching(A, B) / (A.size + B.size)
score = 0.0
for cA in A:
node_score = 0.0
match_no = 0
for cB in B:
tmp = 2 * tree_matching(cA, cB) / (cA.size + cB.size)
if tmp > 0.5:
node_score += tmp
match_no += 1
if match_no > 0:
node_score = node_score / match_no
score += node_score
return (score / len(A)) + 2 / (A.size + B.size)
def recognize_peer_node(M):
pass
def repeat_mining(child_list, N):
return []
def is_aligned(M):
return True
def matrix_alignment(M):
return []
def merge_optional(child_list):
pass
def multiple_tree_merge(T, P=None):
M = [[None for i in xrange(len(T))] for j in xrange(max([len(t) for t in T]))]
for i, t in enumerate(T):
for j, c in enumerate(t):
M[j][i] = c
recognize_peer_node(M)
child_list = repeat_mining(matrix_alignment(M), 1)
merge_optional(child_list)
for c in child_list:
P.append(multiple_tree_merge(peer_node(c, M), tag(c)) if len(c) else c)
return P
if __name__ == "__main__":
H = ["<html><head></head><body> <b>Book Name</b> Databases<br/> <b>Author</b> John </body></html>",
"<html><head></head><body> <b>Book Name</b> Operating Systems<br/> <b>Author</b> Jason </body></html>",
]
T = [Node(etree.fromstring(h)) for h in H]
# for a, b in zip(T[0].iter(), T[1].iter()): print "\t%s\t%s\t%s\t%d\t%d\t%d\t%d\t%f\t%f" % (a.value, b.value, str(a == b), len(a), len(b), a.size, b.size, fiva_tree_match_score(a, b), tree_matching(a,b))
print tree_matching(T[0], T[1])
print fiva_tree_match_score(T[0], T[1])
print multiple_tree_merge(T)