-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathGenetic_algo.py
174 lines (156 loc) · 6.69 KB
/
Genetic_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import snake
import random
import numpy as np
import pickle
from Arena import Arena
import argparse
from input import *
import time
# used to show the progress bar
def progress_bar(curr, total, length):
frac = curr/total
filled_bar = round(frac*length)
print('\r', '#'*filled_bar + '-'*(length - filled_bar), '[{:>7.2%}]'.format(frac), end='')
# to run all the snakes of a population
def run(snakes, arena):
i = 1
count = [0 for _ in range(300)]
snakes_killed = 0
# making new seed for each generation so that fittest of one generation may not be fittest in another
# and we get a global optimum
env_seed = random.random()
for s in snakes:
start_time = time.time()
checkloop = False
progress_bar(i, population_size, 30)
random.seed(env_seed) # so that each snake of the population faces the same environment
s.Brain.setNextFood(arena.newFood(s.list))
while s.isAlive():
result = s.Brain.decision_from_nn(s.head_x, s.head_y, s.list, s.direction)
# to check if continuous loop formed by snake and then killing that snake
if s.steps_taken > 250:
if not checkloop:
checkloop = True
any_point_of_loop = (s.head_x, s.head_y)
times = 0
elif (s.head_x, s.head_y) == any_point_of_loop:
times += 1
if times > 2:
s.crash_wall = True
s.crash_body = True
snakes_killed += 1
else:
checkloop = False
# forcefully killing if loop not caught
if time.time() - start_time > 0.5:
s.crash_wall = True
s.crash_body = True
snakes_killed += 1
# if food eaten by snake
if (s.head_x, s.head_y) == arena.food:
s.steps_taken = 0
result = s.Brain.decision_from_nn(s.head_x, s.head_y, s.list, s.direction)
if not s.increaseSize(result):
s.crash_wall = True
start_time = time.time()
s.Brain.setNextFood(arena.newFood(s.list))
if s.move(result) == False:
break
random.seed()
count[len(s.list) - 1] += 1
i += 1
print('\nsnakes distribution with index as score : ',
count[0:15], 'snakes killed', snakes_killed)
# to print the top five snakes info
def print_top_5(five_snakes):
i = 0
for snake in five_snakes:
i += 1
print('snake : ', i, ', score : ', len(snake.list) -
1, ', steps : ', snake.steps_taken, end='\t')
if snake.crash_body and snake.crash_wall:
print('crashed repetition')
elif snake.crash_wall and not snake.crash_body:
print('crashed wall')
else:
print('crashed body')
# to save the snake
def save_top_snakes(snakes, filename):
f = open(filename, 'wb')
pickle.dump(snakes, f)
f.close()
# used to create the popultion for next generation
def create_new_population(snakes):
# choosing the top x% of the population and breeding them to create new population
# the top x% and bottom y% is also included in new population
parents = []
top_old_parents = int(population_size * per_of_best_old_pop / 100)
bottom_old_parents = int(population_size * per_of_worst_old_pop / 100)
for i in range(top_old_parents):
parent = snake.snake(width, height, brainLayer, block_length,
random_weights=False, random_bases=False)
parent.Brain.weights = snakes[i].Brain.weights
parent.Brain.bases = snakes[i].Brain.bases
parents.append(parent)
for i in range(population_size - 1, population_size - bottom_old_parents - 1, -1):
parent = snake.snake(width, height, brainLayer, block_length,
random_weights=False, random_bases=False)
parent.Brain.weights = snakes[i].Brain.weights
parent.Brain.bases = snakes[i].Brain.bases
parents.append(parent)
# generating children of top x% and bottom y%
children = generate_children(parents, population_size - (top_old_parents + bottom_old_parents))
# mutating children
children = mutate_children(children)
# joining parents and children to make new population
parents.extend(children)
return parents
# mutating the children
def mutate_children(children):
for child in children:
for weight in child.Brain.weights:
for ele in range(int(weight.shape[0]*weight.shape[1]*mutation_percent/100)):
row = random.randint(0, weight.shape[0]-1)
col = random.randint(0, weight.shape[1]-1)
weight[row, col] += random.uniform(-mutation_intensity, mutation_intensity)
return children
# generating children based on the parents passed
def generate_children(parents, no_of_children):
all_children = []
l = len(parents)
for count in range(no_of_children):
parent1 = random.choice(parents)
parent2 = random.choice(parents)
child = snake.snake(width, height, brainLayer, block_length)
for i in range(len(parent1.Brain.weights)):
for j in range(parent1.Brain.weights[i].shape[0]):
for k in range(parent1.Brain.weights[i].shape[1]):
child.Brain.weights[i][j, k] = random.choice(
[parent1.Brain.weights[i][j, k], parent2.Brain.weights[i][j, k]])
for j in range(parent1.Brain.bases[i].shape[1]):
child.Brain.bases[i][0, j] = random.choice(
[parent1.Brain.bases[i][0, j], parent2.Brain.bases[i][0, j]])
all_children.append(child)
return all_children
def main():
# command line argument parser
ap = argparse.ArgumentParser()
ap.add_argument('-o', '--output', required=True, help='relative path to save the snakes')
args = vars(ap.parse_args())
snakes = [snake.snake(width, height, brainLayer, block_length) for _ in range(population_size)]
arena = Arena(width, height, block_length)
top_snakes = []
for i in range(no_of_generations):
print('generation : ', i+1, ',', end='\n')
run(snakes, arena)
# sorting the population wrt length of snake and steps taken
snakes.sort(key=lambda x: (len(x.list), -x.steps_taken), reverse=True)
print_top_5(snakes[0:5])
# generalising the whole population
print('saving the snake')
top_snakes.append(snakes[0])
# saving top snakes list as pickle
save_top_snakes(top_snakes, args['output'])
snakes = create_new_population(snakes)
if __name__ == "__main__":
main()