-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel_blocks.py
99 lines (74 loc) · 4.4 KB
/
model_blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# coding: utf-8
import torch
from torch import nn
from torch.nn import functional as F
class SeparableConv2d(nn.Module):
"""
SeparableConv2d is provided out-of-the-box in keras;
this is the PyTorch implementation suggested here:
https://stackoverflow.com/a/65155106/1616037
"""
def __init__(self, in_channels, out_channels, kernel_size, bias=False):
super(SeparableConv2d, self).__init__()
# a regular convolution (with the arbitrary kernel size),
# which is applied to each channel separately
self.depthwise = nn.Conv2d(in_channels=in_channels, out_channels=in_channels,
kernel_size=kernel_size, groups=in_channels, bias=bias, padding=1)
# a convolution with a (1, 1)-kernel which converts
# the feature map to another one with the required number of `out_channels`
self.pointwise = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=(1, 1), bias=bias)
# ...so essentially this is a 'factorization' of 'heavier' convolutions
def forward(self, x):
return self.pointwise(self.depthwise(x))
class FirstBlock(nn.Module):
""" Two regular convolution blocks. Input image -- to a feature map. """
def __init__(self, in_channels=1,
conv_out=64, conv_kernel_size=(3, 3), conv_stride=(1, 1),
mp_kernel_size=(3, 3), mp_stride=(2, 2)):
super(FirstBlock, self).__init__()
# a regular convolution block: conv2d + batch_norm + max_pooling
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=conv_out,
kernel_size=conv_kernel_size, stride=conv_stride, padding=1)
self.bn1 = nn.BatchNorm2d(conv_out)
self.mp1 = nn.MaxPool2d(kernel_size=mp_kernel_size, stride=mp_stride, padding=1)
# ...then ReLU
# ...then yet another regular convolution block: conv2d + batch_norm + max_pooling
self.conv2 = nn.Conv2d(in_channels=conv_out, out_channels=conv_out,
kernel_size=conv_kernel_size, stride=conv_stride, padding=1)
self.bn2 = nn.BatchNorm2d(conv_out)
self.mp2 = nn.MaxPool2d(kernel_size=mp_kernel_size, stride=mp_stride, padding=1)
# ...then ReLU.
def forward(self, images_tensor):
first_pass_output = F.relu(self.mp1(self.bn1(self.conv1(images_tensor))))
second_pass_output = F.relu(self.mp2(self.bn2(self.conv2(first_pass_output))))
return second_pass_output
class InnerBlock(nn.Module):
""" Inception-like block: separable convolutions, batch-normalizations, activations and max-pooling """
def __init__(self, in_channels, sconv_out=128, sconv_kernel_size=(3, 3), mp_kernel_size=(3, 3), mp_stride=(2, 2)):
super(InnerBlock, self).__init__()
self.sconv1 = SeparableConv2d(in_channels=in_channels, out_channels=sconv_out, kernel_size=sconv_kernel_size)
self.bn1 = nn.BatchNorm2d(sconv_out)
self.sconv2 = SeparableConv2d(in_channels=sconv_out, out_channels=sconv_out, kernel_size=sconv_kernel_size)
self.bn2 = nn.BatchNorm2d(sconv_out)
self.mp = nn.MaxPool2d(kernel_size=mp_kernel_size, stride=mp_stride, padding=1)
def forward(self, x):
first_pass_output = F.relu(self.bn1(self.sconv1(x)))
second_pass_output = F.relu(self.mp(self.bn2(self.sconv2(first_pass_output))))
return second_pass_output
class FinalBlock(nn.Module):
"""
The block of GlyphNet preparing the outputs:
separable convolution + global average pooling + dropout + MLP + softmax"""
def __init__(self, in_channels=256, out_size=172, sconv_out=512, sconv_kernel_size=(3, 3), dropout_rate=0.15):
super(FinalBlock, self).__init__()
self.sconv = SeparableConv2d(in_channels=in_channels, out_channels=sconv_out, kernel_size=sconv_kernel_size)
self.bn = nn.BatchNorm2d(sconv_out)
self.dropout = nn.Dropout(p=dropout_rate)
self.fully_connected = nn.Linear(in_features=sconv_out, out_features=out_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input_tensor):
sconv_pass_result = F.relu(self.bn(self.sconv(input_tensor)))
# computing average over each feature map
pooled = torch.mean(sconv_pass_result, dim=(-1, -2)) # global average pooling
return self.softmax(self.fully_connected(self.dropout(pooled)))