-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_mnist.py
executable file
·138 lines (106 loc) · 3.31 KB
/
nn_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gzip
import cPickle
import tensorflow as tf
import numpy as np
# Alumno: Alejandro Curbelo Fontelos
# Translate a list of labels into an array of 0's and one 1.
# i.e.: 4 -> [0,0,0,0,1,0,0,0,0,0]
def one_hot(x, n):
"""
:param x: label (int)
:param n: number of bits
:return: one hot code
"""
if type(x) == list:
x = np.array(x)
x = x.flatten()
o_h = np.zeros((len(x), n))
o_h[np.arange(len(x)), x] = 1
return o_h
f = gzip.open('mnist.pkl.gz', 'rb')
train_set, valid_set, test_set = cPickle.load(f)
f.close()
x_train, y_train = train_set
x_valid, y_valid = valid_set
x_test, y_test = test_set
#784 data_dim
#train_set 50000
#valid_set 10000
#test_set 10000
y_train = one_hot(y_train.astype(int), 10)
y_valid = one_hot(y_valid.astype(int), 10)
y_test = one_hot(y_test.astype(int), 10)
"""
print "\nSome samples..."
for i in range(20):
print x_train[i], " -> ", y_train[i]
print
"""
x = tf.placeholder("float", [None, 784]) # samples
y_ = tf.placeholder("float", [None, 10]) # labels
W1 = tf.Variable(np.float32(np.random.rand(784, 13)) * 0.1)
b1 = tf.Variable(np.float32(np.random.rand(13)) * 0.1)
W2 = tf.Variable(np.float32(np.random.rand(13, 10)) * 0.1)
b2 = tf.Variable(np.float32(np.random.rand(10)) * 0.1)
h = tf.nn.sigmoid(tf.matmul(x, W1) + b1)
# h = tf.matmul(x, W1) + b1 # Try this!
y = tf.nn.softmax(tf.matmul(h, W2) + b2)
loss = tf.reduce_sum(tf.square(y_ - y))
train = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # learning rate: 0.01
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
print "----------------------"
print " Start training... "
print "----------------------"
batch_size = 20
old_error = 10000
new_error = 9999
epoch = 0
while new_error > 1:
epoch+=1
for jj in xrange(len(x_train) / batch_size):
batch_xs = x_train[jj * batch_size: jj * batch_size + batch_size]
batch_ys = y_train[jj * batch_size: jj * batch_size + batch_size]
sess.run(train, feed_dict={x: batch_xs, y_: batch_ys})
if epoch > 50:
old_error = new_error
new_error = sess.run(loss, feed_dict={x: x_valid, y_: y_valid})
print "Epoch #:", epoch, "Error: ", new_error
"""
result = sess.run(y, feed_dict={x: x_valid})
for i in range(10):
print y_valid[i], "-->"
for j in range(len(result[i])):
print "%.3f" % result[i][j], " ",
print
print "----------------------------------------------------------------------------------"
"""
if 1 < new_error-old_error:
break;
print "----------------------"
print " Start test... "
print "----------------------"
result = sess.run(y, feed_dict={x: x_test})
for i in range(10):
print y_test[i], "-->"
for j in range(len(result[i])):
print "%.3f" % result[i][j],
print
print "(...)"
n_error=0
print "Errores: "
for line_y, line_result in zip(y_test, result):
if np.argmax(line_y) != np.argmax(line_result):
n_error+=1
print "Numero de errores: ", n_error, "/10000 -> ", n_error/100, "%"
print
"""
# ---------------- Visualizing some element of the MNIST dataset --------------
import matplotlib.cm as cm
import matplotlib.pyplot as plt
plt.imshow(x_train[57].reshape((28, 28)), cmap=cm.Greys_r)
plt.show() # Let's see a sample
print y_train[57]
# TODO: the neural net!!
"""