-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_iris.py
executable file
·109 lines (84 loc) · 2.89 KB
/
nn_iris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import tensorflow as tf
import numpy as np
# Alumno: Alejandro Curbelo Fontelos
# Translate a list of labels into an array of 0's and one 1.
# i.e.: 4 -> [0,0,0,0,1,0,0,0,0,0]
def one_hot(x, n):
"""
:param x: label (int)
:param n: number of bits
:return: one hot code
"""
if type(x) == list:
x = np.array(x)
x = x.flatten()
o_h = np.zeros((len(x), n))
o_h[np.arange(len(x)), x] = 1
return o_h
data = np.genfromtxt('iris.data', delimiter=",") # iris.data file loading
np.random.shuffle(data) # we shuffle the data
x_validation = data[0:23, 0:4].astype('f4')
y_validation = one_hot(data[0:23, 4].astype(int), 3)
x_test = data[23:46, 0:4].astype('f4')
y_test = one_hot(data[23:46, 4].astype(int), 3)
x_train = data[46:, 0:4].astype('f4')
y_train = one_hot(data[46:, 4].astype(int), 3)
"""
print "\nSome samples..."
for i in range(20):
print x_train[i], " -> ", y_train[i]
print
"""
x = tf.placeholder("float", [None, 4]) # samples
y_ = tf.placeholder("float", [None, 3]) # labels
W1 = tf.Variable(np.float32(np.random.rand(4, 5)) * 0.1)
b1 = tf.Variable(np.float32(np.random.rand(5)) * 0.1)
W2 = tf.Variable(np.float32(np.random.rand(5, 3)) * 0.1)
b2 = tf.Variable(np.float32(np.random.rand(3)) * 0.1)
h = tf.nn.sigmoid(tf.matmul(x, W1) + b1)
# h = tf.matmul(x, W1) + b1 # Try this!
y = tf.nn.softmax(tf.matmul(h, W2) + b2)
loss = tf.reduce_sum(tf.square(y_ - y))
train = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # learning rate: 0.01
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
print "----------------------"
print " Start training... "
print "----------------------"
batch_size = 20
old_error = 100
new_error = 99
epoch = 0
while new_error > 0.5:
epoch+=1
for jj in xrange(len(x_train) / batch_size):
batch_xs = x_train[jj * batch_size: jj * batch_size + batch_size]
batch_ys = y_train[jj * batch_size: jj * batch_size + batch_size]
sess.run(train, feed_dict={x: batch_xs, y_: batch_ys})
if epoch > 50:
old_error = new_error
new_error = sess.run(loss, feed_dict={x: x_validation, y_: y_validation})
print "Epoch #:", epoch, "Error: ", new_error
"""
result = sess.run(y, feed_dict={x: x_validation})
for b, r in zip(y_validation, result):
print b, "-->", r
print "----------------------------------------------------------------------------------"
"""
if old_error < new_error:
break;
print "----------------------"
print " Start test... "
print "----------------------"
result = sess.run(y, feed_dict={x: x_test})
for b, r in zip(y_test, result):
print b, "-->", r
n_error=0
print "Errores: "
for line_y, line_result in zip(y_test, result):
if np.argmax(line_y) != np.argmax(line_result):
n_error+=1
print line_y, "-->", line_result
print "Numero de errores: ", n_error, "/23 -> ", (n_error*100)/23, "%"
print