forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layers.cpp
210 lines (174 loc) · 8.89 KB
/
layers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include "layers.h"
namespace trtxapi {
ITensor* MeanStd(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor* input, const std::string lname, const float* mean, const float* std, const bool div255) {
if(div255) {
Weights Div_225{ DataType::kFLOAT, nullptr, 3 };
float *wgt = reinterpret_cast<float*>(malloc(sizeof(float) * 3));
std::fill_n(wgt, 3, 255.0f);
Div_225.values = wgt;
weightMap[lname + ".div"] = Div_225;
IConstantLayer* d = network->addConstant(Dims3{ 3, 1, 1 }, Div_225);
input = network->addElementWise(*input, *d->getOutput(0), ElementWiseOperation::kDIV)->getOutput(0);
}
Weights Mean{ DataType::kFLOAT, nullptr, 3 };
Mean.values = mean;
IConstantLayer* m = network->addConstant(Dims3{ 3, 1, 1 }, Mean);
IElementWiseLayer* sub_mean = network->addElementWise(*input, *m->getOutput(0), ElementWiseOperation::kSUB);
if (std != nullptr) {
Weights Std{ DataType::kFLOAT, nullptr, 3 };
Std.values = std;
IConstantLayer* s = network->addConstant(Dims3{ 3, 1, 1 }, Std);
IElementWiseLayer* std_mean = network->addElementWise(*sub_mean->getOutput(0), *s->getOutput(0), ElementWiseOperation::kDIV);
return std_mean->getOutput(0);
} else {
return sub_mean->getOutput(0);
}
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname, const float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights wscale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights wshift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights wpower{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = wscale;
weightMap[lname + ".shift"] = wshift;
weightMap[lname + ".power"] = wpower;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, wshift, wscale, wpower);
assert(scale_1);
return scale_1;
}
IScaleLayer* addInstanceNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname, const float eps) {
int len = weightMap[lname + ".weight"].count;
IReduceLayer* reduce1 = network->addReduce(input,
ReduceOperation::kAVG,
6,
true);
assert(reduce1);
IElementWiseLayer* ew1 = network->addElementWise(input,
*reduce1->getOutput(0),
ElementWiseOperation::kSUB);
assert(ew1);
const static float pval1[3]{0.0, 1.0, 2.0};
Weights wshift1{DataType::kFLOAT, pval1, 1};
Weights wscale1{DataType::kFLOAT, pval1+1, 1};
Weights wpower1{DataType::kFLOAT, pval1+2, 1};
IScaleLayer* scale1 = network->addScale(
*ew1->getOutput(0),
ScaleMode::kUNIFORM,
wshift1,
wscale1,
wpower1);
assert(scale1);
IReduceLayer* reduce2 = network->addReduce(
*scale1->getOutput(0),
ReduceOperation::kAVG,
6,
true);
assert(reduce2);
const static float pval2[3]{eps, 1.0, 0.5};
Weights wshift2{DataType::kFLOAT, pval2, 1};
Weights wscale2{DataType::kFLOAT, pval2+1, 1};
Weights wpower2{DataType::kFLOAT, pval2+2, 1};
IScaleLayer* scale2 = network->addScale(
*reduce2->getOutput(0),
ScaleMode::kUNIFORM,
wshift2,
wscale2,
wpower2);
assert(scale2);
IElementWiseLayer* ew2 = network->addElementWise(*ew1->getOutput(0),
*scale2->getOutput(0),
ElementWiseOperation::kDIV);
assert(ew2);
float* pval3 = reinterpret_cast<float*>(malloc(sizeof(float) * len));
std::fill_n(pval3, len, 1.0);
Weights wpower3{DataType::kFLOAT, pval3, len};
weightMap[lname + ".power3"] = wpower3;
IScaleLayer* scale3 = network->addScale(
*ew2->getOutput(0),
ScaleMode::kCHANNEL,
weightMap[lname + ".bias"],
weightMap[lname + ".weight"],
wpower3);
assert(scale3);
return scale3;
}
IConcatenationLayer* addIBN(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const std::string lname) {
Dims spliteDims = input.getDimensions();
ISliceLayer *split1 = network->addSlice(input,
Dims3{0, 0, 0},
Dims3{spliteDims.d[0]/2, spliteDims.d[1], spliteDims.d[2]},
Dims3{1, 1, 1});
assert(split1);
ISliceLayer *split2 = network->addSlice(input,
Dims3{spliteDims.d[0]/2, 0, 0},
Dims3{spliteDims.d[0]/2, spliteDims.d[1], spliteDims.d[2]},
Dims3{1, 1, 1});
assert(split2);
auto in1 = addInstanceNorm2d(network, weightMap, *split1->getOutput(0), lname + "IN", 1e-5);
auto bn1 = addBatchNorm2d(network, weightMap, *split2->getOutput(0), lname + "BN", 1e-5);
ITensor* tensor1[] = {in1->getOutput(0), bn1->getOutput(0)};
auto cat1 = network->addConcatenation(tensor1, 2);
assert(cat1);
return cat1;
}
IActivationLayer* bottleneck_ibn(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, const int inch, const int outch, const int stride, const std::string lname, const std::string ibn) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{1, 1}, weightMap[lname + "conv1.weight"], emptywts);
assert(conv1);
IActivationLayer* relu1{nullptr};
if (ibn == "a") {
IConcatenationLayer* bn1 = addIBN(network, weightMap, *conv1->getOutput(0), lname + "bn1.");
relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
} else {
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), lname + "bn1", 1e-5);
relu1 = network->addActivation(*bn1->getOutput(0), ActivationType::kRELU);
assert(relu1);
}
IConvolutionLayer* conv2 = network->addConvolutionNd(*relu1->getOutput(0), outch, DimsHW{3, 3}, weightMap[lname + "conv2.weight"], emptywts);
assert(conv2);
conv2->setStrideNd(DimsHW{stride, stride});
conv2->setPaddingNd(DimsHW{1, 1});
IScaleLayer* bn2 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), lname + "bn2", 1e-5);
IActivationLayer* relu2 = network->addActivation(*bn2->getOutput(0), ActivationType::kRELU);
assert(relu2);
IConvolutionLayer* conv3 = network->addConvolutionNd(*relu2->getOutput(0), outch * 4, DimsHW{1, 1}, weightMap[lname + "conv3.weight"], emptywts);
assert(conv3);
IScaleLayer* bn3 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), lname + "bn3", 1e-5);
IElementWiseLayer* ew1;
if (stride != 1 || inch != outch * 4) {
IConvolutionLayer* conv4 = network->addConvolutionNd(input, outch * 4, DimsHW{1, 1}, weightMap[lname + "downsample.0.weight"], emptywts);
assert(conv4);
conv4->setStrideNd(DimsHW{stride, stride});
IScaleLayer* bn4 = addBatchNorm2d(network, weightMap, *conv4->getOutput(0), lname + "downsample.1", 1e-5);
ew1 = network->addElementWise(*bn4->getOutput(0), *bn3->getOutput(0), ElementWiseOperation::kSUM);
} else {
ew1 = network->addElementWise(input, *bn3->getOutput(0), ElementWiseOperation::kSUM);
}
IActivationLayer* relu3{nullptr};
if (ibn == "b") {
IScaleLayer* in1 = addInstanceNorm2d(network, weightMap, *ew1->getOutput(0), lname + "IN", 1e-5);
relu3 = network->addActivation(*in1->getOutput(0), ActivationType::kRELU);
} else {
relu3 = network->addActivation(*ew1->getOutput(0), ActivationType::kRELU);
}
assert(relu3);
return relu3;
}
}