-
Notifications
You must be signed in to change notification settings - Fork 101
/
wbxbar.v
1823 lines (1651 loc) · 44.9 KB
/
wbxbar.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rtl/wbxbar.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: A Configurable wishbone cross-bar interconnect, conforming
// to the WB-B4 pipeline specification, as described on the
// ZipCPU blog.
//
// Performance:
// Throughput: One transaction per clock
// Latency: One clock to get access to an unused channel, another to
// place the results on the slave bus, and another to return, or a minimum
// of three clocks.
//
// Usage: To use, you'll need to set NM and NS to the number of masters
// (input ports) and the number of slaves respectively. You'll then
// want to set the addresses for the slaves in the SLAVE_ADDR array,
// together with the SLAVE_MASK array indicating which SLAVE_ADDRs
// are valid. Address and data widths should be adjusted at the same
// time.
//
// Voila, you are now set up!
//
// Now let's fine tune this:
//
// LGMAXBURST can be set to control the maximum number of outstanding
// transactions. An LGMAXBURST of 6 will allow 63 outstanding
// transactions.
//
// OPT_TIMEOUT, if set to a non-zero value, is a number of clock periods
// to wait for a slave to respond. Should the timeout expire and the
// slave not respond, a bus error will be returned and the slave will
// be issued a bus abort signal (CYC will be dropped).
//
// OPT_STARVATION_TIMEOUT, if set, applies the OPT_TIMEOUT counter to
// how long a particular master waits for arbitration. If the master is
// "starved", a bus error will be returned.
//
// OPT_DBLBUFFER is used to increase clock speed by registering all
// outputs.
//
// OPT_LOWPOWER is an experimental feature that, if set, will cause any
// unused FFs to be set to zero rather than flopping in the electronic
// wind, in an effort to minimize transitions over bus wires. This will
// cost some extra logic, for ... an uncertain power savings.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2019-2025, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
// }}}
// http://www.apache.org/licenses/LICENSE-2.0
// {{{
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module wbxbar #(
// {{{
parameter NM = 4, NS=8,
parameter AW = 32, DW=32,
parameter [NS*AW-1:0] SLAVE_ADDR = {
{ 3'b111, {(AW-3){1'b0}} },
{ 3'b110, {(AW-3){1'b0}} },
{ 3'b101, {(AW-3){1'b0}} },
{ 3'b100, {(AW-3){1'b0}} },
{ 3'b011, {(AW-3){1'b0}} },
{ 3'b010, {(AW-3){1'b0}} },
{ 4'b0010, {(AW-4){1'b0}} },
{ 4'b0000, {(AW-4){1'b0}} } },
parameter [NS*AW-1:0] SLAVE_MASK = (NS <= 1) ? 0
: { {(NS-2){ 3'b111, {(AW-3){1'b0}} }},
{(2){ 4'b1111, {(AW-4){1'b0}} }} },
//
// LGMAXBURST is the log_2 of the length of the longest burst
// that might be seen. It's used to set the size of the
// internal counters that are used to make certain that the
// cross bar doesn't switch while still waiting on a response.
parameter LGMAXBURST=6,
//
// OPT_TIMEOUT is used to help recover from a misbehaving slave.
// If set, this value will determine the number of clock cycles
// to wait for a misbehaving slave before returning a bus error.
// Alternatively, if set to zero, this functionality will be
// removed.
parameter OPT_TIMEOUT = 0, // 1023;
//
// If OPT_TIMEOUT is set, then OPT_STARVATION_TIMEOUT may also
// be set. The starvation timeout adds to the bus error timeout
// generation the possibility that a master will wait
// OPT_TIMEOUT counts without receiving the bus. This may be
// the case, for example, if one bus master is consuming a
// peripheral to such an extent that there's no time/room for
// another bus master to use it. In that case, when the timeout
// runs out, the waiting bus master will be given a bus error.
parameter [0:0] OPT_STARVATION_TIMEOUT = 1'b0
&& (OPT_TIMEOUT > 0),
//
// OPT_DBLBUFFER is used to register all of the outputs, and
// thus avoid adding additional combinational latency through
// the core that might require a slower clock speed.
parameter [0:0] OPT_DBLBUFFER = 1'b0,
//
// OPT_LOWPOWER adds logic to try to force unused values to
// zero, rather than to allow a variety of logic optimizations
// that could be used to reduce the logic count of the device.
// Hence, OPT_LOWPOWER will use more logic, but it won't drive
// bus wires unless there's a value to drive onto them.
parameter [0:0] OPT_LOWPOWER = 1'b1
// }}}
) (
// {{{
input wire i_clk, i_reset,
//
// Here are the bus inputs from each of the WB bus masters
input wire [NM-1:0] i_mcyc, i_mstb, i_mwe,
input wire [NM*AW-1:0] i_maddr,
input wire [NM*DW-1:0] i_mdata,
input wire [NM*DW/8-1:0] i_msel,
//
// .... and their return data
output wire [NM-1:0] o_mstall,
output wire [NM-1:0] o_mack,
output reg [NM*DW-1:0] o_mdata,
output wire [NM-1:0] o_merr,
//
//
// Here are the output ports, used to control each of the
// various slave ports that we are connected to
output wire [NS-1:0] o_scyc, o_sstb, o_swe,
output wire [NS*AW-1:0] o_saddr,
output wire [NS*DW-1:0] o_sdata,
output wire [NS*DW/8-1:0] o_ssel,
//
// ... and their return data back to us.
input wire [NS-1:0] i_sstall, i_sack,
input wire [NS*DW-1:0] i_sdata,
input wire [NS-1:0] i_serr
// }}}
);
//
//
////////////////////////////////////////////////////////////////////////
//
// Register declarations
// {{{
//
// TIMEOUT_WIDTH is the number of bits in counter used to check
// on a timeout.
localparam TIMEOUT_WIDTH = $clog2(OPT_TIMEOUT);
//
// LGNM is the log (base two) of the number of bus masters
// connecting to this crossbar
localparam LGNM = (NM>1) ? $clog2(NM) : 1;
//
// LGNS is the log (base two) of the number of slaves plus one
// come out of the system. The extra "plus one" is used for a
// pseudo slave representing the case where the given address
// doesn't connect to any of the slaves. This address will
// generate a bus error.
localparam LGNS = $clog2(NS+1);
// At one time I used o_macc and o_sacc to put into the outgoing
// trace file, just enough logic to tell me if a transaction was
// taking place on the given clock.
//
// assign o_macc = (i_mstb & ~o_mstall);
// assign o_sacc = (o_sstb & ~i_sstall);
//
// These definitions work with Veri1ator, just not with Yosys
// reg [NM-1:0][NS:0] request;
// reg [NM-1:0][NS-1:0] requested;
// reg [NM-1:0][NS:0] grant;
//
// These definitions work with both
wire [NS:0] request [0:NM-1];
reg [NS-1:0] requested [0:NM-1];
wire [NS:0] grant [0:NM-1];
wire [NM-1:0] mgrant;
wire [NS-1:0] sgrant;
// Verilator lint_off UNUSED
wire [LGMAXBURST-1:0] w_mpending [0:NM-1];
// Verilator lint_on UNUSED
wire [NM-1:0] mfull, mnearfull, mempty;
wire [NM-1:0] timed_out;
localparam NMFULL = (NM > 1) ? (1<<LGNM) : 1;
localparam NSFULL = (1<<LGNS);
wire [LGNS-1:0] mindex [0:NMFULL-1];
wire [LGNM-1:0] sindex [0:NSFULL-1];
wire [NMFULL-1:0] m_cyc;
wire [NMFULL-1:0] m_stb;
wire [NMFULL-1:0] m_we;
wire [AW-1:0] m_addr [0:NMFULL-1];
wire [DW-1:0] m_data [0:NMFULL-1];
wire [DW/8-1:0] m_sel [0:NMFULL-1];
reg [NM-1:0] m_stall;
//
wire [NSFULL-1:0] s_stall;
wire [DW-1:0] s_data [0:NSFULL-1];
wire [NSFULL-1:0] s_ack;
wire [NSFULL-1:0] s_err;
wire [NM-1:0] dcd_stb;
localparam [0:0] OPT_BUFFER_DECODER=(NS != 1 || SLAVE_MASK != 0);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Incoming signal arbitration
// {{{
////////////////////////////////////////////////////////////////////////
//
//
genvar N, M;
integer iN, iM;
generate for(N=0; N<NM; N=N+1)
begin : DECODE_REQUEST
// {{{
// Register declarations
// {{{
wire skd_stb, skd_stall;
wire skd_we;
wire [AW-1:0] skd_addr;
wire [DW-1:0] skd_data;
wire [DW/8-1:0] skd_sel;
wire [NS:0] decoded;
wire iskd_ready;
// }}}
skidbuffer #(
// {{{
// Can't run OPT_LOWPOWER here, less we mess up the
// consistency in skd_we following
//
// .OPT_LOWPOWER(OPT_LOWPOWER),
.DW(1+AW+DW+DW/8),
`ifdef FORMAL
.OPT_PASSTHROUGH(1),
`endif
.OPT_OUTREG(0)
// }}}
) iskid (
// {{{
.i_clk(i_clk),
.i_reset(i_reset || !i_mcyc[N]),
.i_valid(i_mstb[N]), .o_ready(iskd_ready),
.i_data({ i_mwe[N], i_maddr[N*AW +: AW],
i_mdata[N*DW +: DW],
i_msel[N*DW/8 +: DW/8] }),
.o_valid(skd_stb), .i_ready(!skd_stall),
.o_data({ skd_we, skd_addr, skd_data, skd_sel })
// }}}
);
assign o_mstall[N] = !iskd_ready;
addrdecode #(
// {{{
// Can't run OPT_LOWPOWER here, less we mess up the
// consistency in m_we following
//
// .OPT_LOWPOWER(OPT_LOWPOWER),
.NS(NS), .AW(AW), .DW(DW+DW/8+1),
.SLAVE_ADDR(SLAVE_ADDR),
.SLAVE_MASK(SLAVE_MASK),
.OPT_REGISTERED(OPT_BUFFER_DECODER)
// }}}
) adcd(
// {{{
.i_clk(i_clk), .i_reset(i_reset),
.i_valid(skd_stb && i_mcyc[N]), .o_stall(skd_stall),
.i_addr(skd_addr),
.i_data({ skd_we, skd_data, skd_sel }),
.o_valid(dcd_stb[N]), .i_stall(m_stall[N]&&i_mcyc[N]),
.o_decode(decoded), .o_addr(m_addr[N]),
.o_data({ m_we[N], m_data[N], m_sel[N] })
// }}}
);
assign request[N] = (m_cyc[N] && dcd_stb[N]) ? decoded : 0;
assign m_cyc[N] = i_mcyc[N];
assign m_stb[N] = i_mcyc[N] && dcd_stb[N] && !mfull[N];
// }}}
end for(N=NM; N<NMFULL; N=N+1)
begin : UNUSED_MASTER_SIGNALS
// {{{
// in case NM isn't one less than a power of two, complete
// the set
assign m_cyc[N] = 0;
assign m_stb[N] = 0;
assign m_we[N] = 0;
assign m_addr[N] = 0;
assign m_data[N] = 0;
assign m_sel[N] = 0;
// }}}
end endgenerate
// requested
// {{{
always @(*)
begin
for(iM=0; iM<NS; iM=iM+1)
begin
// For each slave
requested[0][iM] = 0;
for(iN=1; iN<NM; iN=iN+1)
begin
// This slave has been requested if a prior
// master has requested it
//
// This includes any master before the last one
requested[iN][iM] = requested[iN-1][iM];
//
// As well as if the last master has requested
// this slave. Only count this request, though,
// if this master could act upon it.
if (request[iN-1][iM] &&
(grant[iN-1][iM]
|| (!mgrant[iN-1]||mempty[iN-1])))
requested[iN][iM] = 1;
end
end
end
// }}}
generate for(M=0; M<NS; M=M+1)
begin : SLAVE_GRANT
// {{{
`define REGISTERED_SGRANT
`ifdef REGISTERED_SGRANT
// {{{
reg drop_sgrant;
// drop_sgrant
// {{{
always @(*)
begin
drop_sgrant = !m_cyc[sindex[M]];
if (!request[sindex[M]][M] && m_stb[sindex[M]]
&& mempty[sindex[M]])
drop_sgrant = 1;
if (!sgrant[M])
drop_sgrant = 0;
if (i_reset)
drop_sgrant = 1;
end
// }}}
// sgrant
// {{{
reg r_sgrant;
initial r_sgrant = 0;
always @(posedge i_clk)
begin
r_sgrant <= sgrant[M];
for(iN=0; iN<NM; iN=iN+1)
if (request[iN][M] && (!mgrant[iN] || mempty[iN]))
r_sgrant <= 1;
if (drop_sgrant)
r_sgrant <= 0;
end
assign sgrant[M] = r_sgrant;
// }}}
// }}}
`else
// {{{
// sgrant
// {{{
reg r_sgrant;
always @(*)
begin
r_sgrant = 0;
for(iN=0; iN<NM; iN=iN+1)
if (grant[iN][M])
r_sgrant = 1;
end
assign sgrant[M] = r_sgrant;
// }}}
// }}}
`endif
assign s_data[M] = i_sdata[M*DW +: DW];
assign s_stall[M] = o_sstb[M] && i_sstall[M];
assign s_ack[M] = o_scyc[M] && i_sack[M];
assign s_err[M] = o_scyc[M] && i_serr[M];
// }}}
end for(M=NS; M<NSFULL; M=M+1)
begin : UNUSED_SLAVE_SIGNALS
// {{{
assign s_data[M] = 0;
assign s_stall[M] = 1;
assign s_ack[M] = 0;
assign s_err[M] = 1;
// }}}
end endgenerate
//
// Arbitrate among masters to determine who gets to access a given
// channel
generate for(N=0; N<NM; N=N+1)
begin : ARBITRATE_REQUESTS
// {{{
// Register declarations
// {{{
wire [NS:0] regrant;
wire [LGNS-1:0] reindex;
// This is done using a couple of variables.
//
// request[N][M]
// This is true if master N is requesting to access slave
// M. It is combinatorial, so it will be true if the
// request is being made on the current clock.
//
// requested[N][M]
// True if some other master, prior to N, has requested
// channel M. This creates a basic priority arbiter,
// such that lower numbered masters have access before
// a greater numbered master
//
// grant[N][M]
// True if a grant has been made for master N to access
// slave channel M
//
// mgrant[N]
// True if master N has been granted access to some slave
// channel, any channel.
//
// mindex[N]
// This is the number of the slave channel that master
// N has been given access to
//
// sgrant[M]
// True if there exists some master, N, that has been
// granted access to this slave, hence grant[N][M] must
// also be true
//
// sindex[M]
// This is the index of the master that has access to
// slave M, assuming sgrant[M]. Hence, if sgrant[M]
// then grant[sindex[M]][M] must be true
//
reg stay_on_channel;
reg requested_channel_is_available;
// }}}
// stay_on_channel
// {{{
always @(*)
begin
stay_on_channel = |(request[N] & grant[N]);
if (mgrant[N] && !mempty[N])
stay_on_channel = 1;
end
// }}}
// requested_channel_is_available
// {{{
always @(*)
begin
requested_channel_is_available =
|(request[N][NS-1:0]& ~sgrant & ~requested[N][NS-1:0]);
if (request[N][NS])
requested_channel_is_available = 1;
if (NM < 2)
requested_channel_is_available = m_stb[N];
end
// }}}
// grant, mgrant
// {{{
reg r_mgrant;
reg [NS:0] r_grant;
initial r_grant = 0;
initial r_mgrant = 0;
always @(posedge i_clk)
if (i_reset || !i_mcyc[N])
begin
r_grant <= 0;
r_mgrant <= 0;
end else if (!stay_on_channel)
begin
if (requested_channel_is_available)
begin
r_mgrant <= 1'b1;
r_grant <= request[N];
end else if (m_stb[N])
begin
r_mgrant <= 1'b0;
r_grant <= 0;
end
end
assign mgrant[N] = r_mgrant;
assign grant[N] = r_grant;
// }}}
if (NS == 1)
begin : MINDEX_ONE_SLAVE
// {{{
assign mindex[N] = 0;
assign regrant = 0;
assign reindex = 0;
// Verilator lint_off UNUSED
wire unused_regrant = &{ 1'b0, regrant, reindex };
// Verialtor lint_on UNUSED
// }}}
end else begin : MINDEX_MULTIPLE_SLAVES
// {{{
reg [LGNS-1:0] r_mindex;
`define NEW_MINDEX_CODE
`ifdef NEW_MINDEX_CODE
// {{{
reg [NS:0] r_regrant;
reg [LGNS-1:0] r_reindex;
// r_regrant
// {{{
always @(*)
begin
r_regrant = 0;
for(iM=0; iM<NS; iM=iM+1)
begin
if (grant[N][iM])
// Maintain any open channels
r_regrant[iM] = 1'b1;
else if (!sgrant[iM]&&!requested[N][iM])
r_regrant[iM] = 1'b1;
if (!request[N][iM])
r_regrant[iM] = 1'b0;
end
if (grant[N][NS])
r_regrant[NS] = 1;
if (!request[N][NS])
r_regrant[NS] = 0;
if (mgrant[N] && !mempty[N])
r_regrant = 0;
end
// }}}
// r_reindex
// {{{
// Verilator lint_off BLKSEQ
always @(r_regrant, regrant)
begin
r_reindex = 0;
for(iM=0; iM<=NS; iM=iM+1)
if (r_regrant[iM])
r_reindex = r_reindex | iM[LGNS-1:0];
if (regrant == 0)
r_reindex = r_mindex;
end
// Verilator lint_on BLKSEQ
// }}}
always @(posedge i_clk)
r_mindex <= reindex;
assign reindex = r_reindex;
assign regrant = r_regrant;
// }}}
`else
// {{{
always @(posedge i_clk)
if (!mgrant[N] || mempty[N])
begin
for(iM=0; iM<NS; iM=iM+1)
begin
if (request[N][iM] && grant[N][iM])
begin
// Maintain any open channels
r_mindex <= iM;
end else if (request[N][iM]
&& !sgrant[iM]
&& !requested[N][iM])
begin
// Open a new channel
// if necessary
r_mindex <= iM;
end
end
end
// }}}
`endif // NEW_MINDEX_CODE
assign mindex[N] = r_mindex;
// }}}
end
// }}}
end for (N=NM; N<NMFULL; N=N+1)
begin : UNUSED_MINDEXES
// {{{
assign mindex[N] = 0;
// }}}
end endgenerate
// Calculate sindex. sindex[M] (indexed by slave ID)
// references the master controlling this slave. This makes for
// faster/cheaper logic on the return path, since we can now use
// a fully populated LUT rather than a priority based return scheme
generate for(M=0; M<NS; M=M+1)
begin : GEN_SINDEX
// {{{
if (NM <= 1)
begin : SINDEX_SINGLE_MASTER
// {{{
// If there will only ever be one master, then we
// can assume all slave indexes point to that master
assign sindex[M] = 0;
// }}}
end else begin : SINDEX_MORE_THAN_ONE_MASTER
// {{{
reg [LGNM-1:0] r_sindex;
`define NEW_SINDEX_CODE
`ifdef NEW_SINDEX_CODE
// {{{
reg [NM-1:0] regrant;
reg [LGNM-1:0] reindex;
always @(*)
begin
regrant = 0;
for (iN=0; iN<NM; iN=iN+1)
begin
// Each bit depends upon 6 inputs, so
// one 6-LUT should be sufficient
if (grant[iN][M])
regrant[iN] = 1;
else if (!sgrant[M]&& !requested[iN][M])
regrant[iN] = 1;
if (!request[iN][M])
regrant[iN] = 0;
if (mgrant[iN] && !mempty[iN])
regrant[iN] = 0;
end
end
always @(*)
begin
reindex = 0;
// Each bit in reindex depends upon all of the
// bits in regrant--should still be one LUT
// per bit though
if (regrant == 0)
reindex = sindex[M];
else for(iN=0; iN<NM; iN=iN+1)
if (regrant[iN])
reindex = reindex | iN[LGNM-1:0];
end
always @(posedge i_clk)
r_sindex <= reindex;
assign sindex[M] = r_sindex;
// }}}
`else
// {{{
always @(posedge i_clk)
for (iN=0; iN<NM; iN=iN+1)
begin
if (!mgrant[iN] || mempty[iN])
begin
if (request[iN][M] && grant[iN][M])
r_sindex <= iN;
else if (request[iN][M] && !sgrant[M]
&& !requested[iN][M])
r_sindex <= iN;
end
end
assign sindex[M] = r_sindex;
// }}}
`endif
// }}}
end
// }}}
end for(M=NS; M<NSFULL; M=M+1)
begin : UNUSED_SINDEXES
// {{{
// Assign the unused slave indexes to zero
//
// Remember, to full out a full 2^something set of slaves,
// we may have more slave indexes than we actually have slaves
assign sindex[M] = 0;
// }}}
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Assign outputs to the slaves
// {{{
////////////////////////////////////////////////////////////////////////
//
//
//
// Part one
//
// In this part, we assign the difficult outputs: o_scyc and o_sstb
generate for(M=0; M<NS; M=M+1)
begin : GEN_CYC_STB
// {{{
reg r_scyc, r_sstb;
initial r_scyc = 0;
initial r_sstb = 0;
always @(posedge i_clk)
begin
if (sgrant[M])
begin
if (!i_mcyc[sindex[M]])
begin
r_scyc <= 1'b0;
r_sstb <= 1'b0;
end else begin
r_scyc <= 1'b1;
if (!r_sstb || !s_stall[M])
r_sstb <=request[sindex[M]][M]
&& !mfull[sindex[M]];
end
end else begin
r_scyc <= 1'b0;
r_sstb <= 1'b0;
end
if (i_reset || s_err[M])
begin
r_scyc <= 1'b0;
r_sstb <= 1'b0;
end
end
assign o_scyc[M] = r_scyc;
assign o_sstb[M] = r_sstb;
// }}}
end endgenerate
//
// Part two
//
// These are the easy(er) outputs, since there are fewer properties
// riding on them
generate if ((NM == 1) && (!OPT_LOWPOWER))
begin : ONE_MASTER
// {{{
reg r_swe;
reg [AW-1:0] r_saddr;
reg [DW-1:0] r_sdata;
reg [DW/8-1:0] r_ssel;
//
// This is the low logic version of our bus data outputs.
// It only works if we only have one master.
//
// The basic idea here is that we share all of our bus outputs
// between all of the various slaves. Since we only have one
// bus master, this works.
//
always @(posedge i_clk)
begin
r_swe <= o_swe[0];
r_saddr <= o_saddr[0+:AW];
r_sdata <= o_sdata[0+:DW];
r_ssel <= o_ssel[0+:DW/8];
// Verilator lint_off WIDTH
if (sgrant[mindex[0]] && !s_stall[mindex[0]])
// Verilator lint_on WIDTH
begin
r_swe <= m_we[0];
r_saddr <= m_addr[0];
r_sdata <= m_data[0];
r_ssel <= m_sel[0];
end
end
//
// The original version set o_s*[0] above, and then
// combinatorially the rest of o_s* here below. That broke
// Veri1ator. Hence, we're using r_s* and setting all of o_s*
// here.
for(M=0; M<NS; M=M+1)
begin : FOREACH_SLAVE_PORT
assign o_swe[M] = r_swe;
assign o_saddr[M*AW +: AW] = r_saddr;
assign o_sdata[M*DW +: DW] = r_sdata;
assign o_ssel[M*DW/8+:DW/8]= r_ssel;
end
// }}}
end else begin : J
for(M=0; M<NS; M=M+1)
begin : GEN_DOWNSTREAM
// {{{
reg r_swe;
reg [AW-1:0] r_saddr;
reg [DW-1:0] r_sdata;
reg [DW/8-1:0] r_ssel;
always @(posedge i_clk)
if (OPT_LOWPOWER && !sgrant[M])
begin
r_swe <= 1'b0;
r_saddr <= 0;
r_sdata <= 0;
r_ssel <= 0;
end else if (!s_stall[M]) begin
r_swe <= m_we[sindex[M]];
r_saddr <= m_addr[sindex[M]];
if (OPT_LOWPOWER && !m_we[sindex[M]])
r_sdata <= 0;
else
r_sdata <= m_data[sindex[M]];
r_ssel<= m_sel[sindex[M]];
end
assign o_swe[M] = r_swe;
assign o_saddr[M*AW +: AW] = r_saddr;
assign o_sdata[M*DW +: DW] = r_sdata;
assign o_ssel[M*(DW/8)+:DW/8]= r_ssel;
// }}}
end end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Assign return values to the masters
// {{{
////////////////////////////////////////////////////////////////////////
//
//
generate if (OPT_DBLBUFFER)
begin : DOUBLE_BUFFERRED_STALL
// {{{
for(N=0; N<NM; N=N+1)
begin : FOREACH_MASTER_PORT
// m_stall isn't buffered, since it depends upon
// the already existing buffer within the address
// decoder
reg r_mack, r_merr;
always @(*)
begin
if (grant[N][NS])
m_stall[N] = 1;
else if (mgrant[N] && request[N][mindex[N]])
m_stall[N] = mfull[N] || s_stall[mindex[N]];
else
m_stall[N] = m_stb[N];
if (o_merr[N])
m_stall[N] = 0;
end
initial r_mack = 0;
initial r_merr = 0;
always @(posedge i_clk)
begin
// Verilator lint_off WIDTH
iM = mindex[N];
// Verilator lint_on WIDTH
r_mack <= mgrant[N] && s_ack[mindex[N]];
r_merr <= mgrant[N] && s_err[mindex[N]];
if (OPT_LOWPOWER && !mgrant[N])
o_mdata[N*DW +: DW] <= 0;
else
o_mdata[N*DW +: DW] <= s_data[mindex[N]];
if (grant[N][NS]||(timed_out[N] && !o_mack[N]))
begin
r_mack <= 1'b0;
r_merr <= !o_merr[N];
end
if (i_reset || !i_mcyc[N] || o_merr[N])
begin
r_mack <= 1'b0;
r_merr <= 1'b0;
end
end
assign o_mack[N] = r_mack;
assign o_merr[N] = (!OPT_STARVATION_TIMEOUT || i_mcyc[N]) && r_merr;
end
// }}}
end else if (NS == 1) // && !OPT_DBLBUFFER
begin : SINGLE_SLAVE
// {{{
for(N=0; N<NM; N=N+1)
begin : FOREACH_MASTER_PORT
reg r_mack, r_merr;
always @(*)
begin
m_stall[N] = !mgrant[N] || s_stall[0]
|| (m_stb[N] && !request[N][0]);
r_mack = mgrant[N] && i_sack[0];
r_merr = mgrant[N] && i_serr[0];
o_mdata[N*DW +: DW] = (!mgrant[N] && OPT_LOWPOWER)
? 0 : i_sdata;
if (mfull[N])
m_stall[N] = 1'b1;
if (timed_out[N] && !r_mack)
begin
m_stall[N] = 1'b0;
r_mack = 1'b0;
r_merr = 1'b1;
end
if (grant[N][NS] && m_stb[N])
begin
m_stall[N] = 1'b0;
r_mack = 1'b0;
r_merr = 1'b1;
end
if (!m_cyc[N])
begin
r_mack = 1'b0;
r_merr = 1'b0;
end
end
assign o_mack[N] = r_mack;
assign o_merr[N] = r_merr;
end
// }}}
end else begin : SINGLE_BUFFER_STALL
// {{{
for(N=0; N<NM; N=N+1)
begin : FOREACH_MASTER_PORT
// initial o_mstall[N] = 0;
// initial o_mack[N] = 0;
reg r_mack, r_merr;
always @(*)
begin
m_stall[N] = 1;
r_mack = mgrant[N] && s_ack[mindex[N]];
r_merr = mgrant[N] && s_err[mindex[N]];
if (OPT_LOWPOWER && !mgrant[N])
o_mdata[N*DW +: DW] = 0;
else
o_mdata[N*DW +: DW] = s_data[mindex[N]];
if (mgrant[N])
// Possibly lower the stall signal
m_stall[N] = s_stall[mindex[N]]
|| !request[N][mindex[N]];
if (mfull[N])
m_stall[N] = 1'b1;
if (grant[N][NS] ||(timed_out[N] && !r_mack))