-
Notifications
You must be signed in to change notification settings - Fork 101
/
axim2wbsp.v
316 lines (307 loc) · 9.04 KB
/
axim2wbsp.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rtl/axim2wbsp.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: So ... this converter works in the other direction from
// wbm2axisp. This converter takes AXI commands, and organizes
// them into pipelined wishbone commands.
//
// This particular core treats AXI as two separate buses: one for writes,
// and the other for reads. This particular core combines the two channels
// into one. The designer should be aware that the two AXI buses turned
// Wishbone buses can be kept separate as separate inputs to a WB crosssbar
// for better performance in some circumstances.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2016-2025, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
// }}}
// http://www.apache.org/licenses/LICENSE-2.0
// {{{
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module axim2wbsp #(
// {{{
parameter C_AXI_ID_WIDTH = 2, // The AXI id width used for R&W
// This is an int between 1-16
parameter C_AXI_DATA_WIDTH = 32,// Width of the AXI R&W data
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width
localparam AXI_LSBS = $clog2(C_AXI_DATA_WIDTH)-3,
localparam DW = C_AXI_DATA_WIDTH,
localparam AW = C_AXI_ADDR_WIDTH - AXI_LSBS,
parameter LGFIFO = 5,
parameter [0:0] OPT_SWAP_ENDIANNESS = 1'b0,
parameter [0:0] OPT_READONLY = 1'b0,
parameter [0:0] OPT_WRITEONLY = 1'b0
// }}}
) (
// {{{
//
input wire S_AXI_ACLK, // System clock
input wire S_AXI_ARESETN,
// AXI write address channel signals
// {{{
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [7:0] S_AXI_AWLEN,
input wire [2:0] S_AXI_AWSIZE,
input wire [1:0] S_AXI_AWBURST,
input wire [0:0] S_AXI_AWLOCK,
input wire [3:0] S_AXI_AWCACHE,
input wire [2:0] S_AXI_AWPROT,
input wire [3:0] S_AXI_AWQOS,
// }}}
// AXI write data channel signals
// {{{
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
// }}}
// AXI write response channel signals
// {{{
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
// }}}
// AXI read address channel signals
// {{{
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [7:0] S_AXI_ARLEN,
input wire [2:0] S_AXI_ARSIZE,
input wire [1:0] S_AXI_ARBURST,
input wire [0:0] S_AXI_ARLOCK,
input wire [3:0] S_AXI_ARCACHE,
input wire [2:0] S_AXI_ARPROT,
input wire [3:0] S_AXI_ARQOS,
// }}}
// AXI read data channel signals
// {{{
output wire S_AXI_RVALID, // Rd rslt valid
input wire S_AXI_RREADY, // Rd rslt ready
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, // Response ID
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,// Read data
output wire S_AXI_RLAST, // Read last
output wire [1:0] S_AXI_RRESP, // Read response
// }}}
// We'll share the clock and the reset
// {{{
output wire o_reset,
output wire o_wb_cyc,
output wire o_wb_stb,
output wire o_wb_we,
output wire [(AW-1):0] o_wb_addr,
output wire [(C_AXI_DATA_WIDTH-1):0] o_wb_data,
output wire [(C_AXI_DATA_WIDTH/8-1):0] o_wb_sel,
input wire i_wb_stall,
input wire i_wb_ack,
input wire [(C_AXI_DATA_WIDTH-1):0] i_wb_data,
input wire i_wb_err
// }}}
// }}}
);
//
//
//
wire [(AW-1):0] w_wb_addr, r_wb_addr;
wire [(C_AXI_DATA_WIDTH-1):0] w_wb_data;
wire [(C_AXI_DATA_WIDTH/8-1):0] w_wb_sel, r_wb_sel;
wire r_wb_err, r_wb_cyc, r_wb_stb, r_wb_stall, r_wb_ack;
wire w_wb_err, w_wb_cyc, w_wb_stb, w_wb_stall, w_wb_ack;
wire r_wb_we, w_wb_we;
assign r_wb_we = 1'b0;
assign w_wb_we = 1'b1;
generate if (!OPT_READONLY)
begin : AXI_WR
// {{{
aximwr2wbsp #(
// {{{
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.OPT_SWAP_ENDIANNESS(OPT_SWAP_ENDIANNESS),
.LGFIFO(LGFIFO)
// }}}
) axi_write_decoder(
// {{{
.S_AXI_ACLK(S_AXI_ACLK), .S_AXI_ARESETN(S_AXI_ARESETN),
//
.S_AXI_AWVALID(S_AXI_AWVALID),
.S_AXI_AWREADY(S_AXI_AWREADY),
.S_AXI_AWID( S_AXI_AWID),
.S_AXI_AWADDR( S_AXI_AWADDR),
.S_AXI_AWLEN( S_AXI_AWLEN),
.S_AXI_AWSIZE( S_AXI_AWSIZE),
.S_AXI_AWBURST(S_AXI_AWBURST),
.S_AXI_AWLOCK( S_AXI_AWLOCK),
.S_AXI_AWCACHE(S_AXI_AWCACHE),
.S_AXI_AWPROT( S_AXI_AWPROT),
.S_AXI_AWQOS( S_AXI_AWQOS),
//
.S_AXI_WVALID( S_AXI_WVALID),
.S_AXI_WREADY( S_AXI_WREADY),
.S_AXI_WDATA( S_AXI_WDATA),
.S_AXI_WSTRB( S_AXI_WSTRB),
.S_AXI_WLAST( S_AXI_WLAST),
//
.S_AXI_BVALID(S_AXI_BVALID),
.S_AXI_BREADY(S_AXI_BREADY),
.S_AXI_BID( S_AXI_BID),
.S_AXI_BRESP( S_AXI_BRESP),
//
.o_wb_cyc( w_wb_cyc),
.o_wb_stb( w_wb_stb),
.o_wb_addr( w_wb_addr),
.o_wb_data( w_wb_data),
.o_wb_sel( w_wb_sel),
.i_wb_ack( w_wb_ack),
.i_wb_stall(w_wb_stall),
.i_wb_err( w_wb_err)
// }}}
);
// }}}
end else begin : NO_WRITE_CHANNEL
// {{{
assign w_wb_cyc = 0;
assign w_wb_stb = 0;
assign w_wb_addr = 0;
assign w_wb_data = 0;
assign w_wb_sel = 0;
assign S_AXI_AWREADY = 0;
assign S_AXI_WREADY = 0;
assign S_AXI_BVALID = 0;
assign S_AXI_BRESP = 2'b11;
assign S_AXI_BID = 0;
// }}}
end endgenerate
generate if (!OPT_WRITEONLY)
begin : AXI_RD
// {{{
aximrd2wbsp #(
// {{{
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.OPT_SWAP_ENDIANNESS(OPT_SWAP_ENDIANNESS),
.LGFIFO(LGFIFO)
// }}}
) axi_read_decoder(
// {{{
.S_AXI_ACLK(S_AXI_ACLK), .S_AXI_ARESETN(S_AXI_ARESETN),
//
.S_AXI_ARVALID(S_AXI_ARVALID),
.S_AXI_ARREADY(S_AXI_ARREADY),
.S_AXI_ARID( S_AXI_ARID),
.S_AXI_ARADDR( S_AXI_ARADDR),
.S_AXI_ARLEN( S_AXI_ARLEN),
.S_AXI_ARSIZE( S_AXI_ARSIZE),
.S_AXI_ARBURST(S_AXI_ARBURST),
.S_AXI_ARLOCK( S_AXI_ARLOCK),
.S_AXI_ARCACHE(S_AXI_ARCACHE),
.S_AXI_ARPROT( S_AXI_ARPROT),
.S_AXI_ARQOS( S_AXI_ARQOS),
//
.S_AXI_RVALID(S_AXI_RVALID),
.S_AXI_RREADY(S_AXI_RREADY),
.S_AXI_RID( S_AXI_RID),
.S_AXI_RDATA( S_AXI_RDATA),
.S_AXI_RLAST( S_AXI_RLAST),
.S_AXI_RRESP( S_AXI_RRESP),
//
.o_wb_cyc( r_wb_cyc),
.o_wb_stb( r_wb_stb),
.o_wb_addr( r_wb_addr),
.o_wb_sel( r_wb_sel),
.i_wb_ack( r_wb_ack),
.i_wb_stall(r_wb_stall),
.i_wb_data( i_wb_data),
.i_wb_err( r_wb_err)
// }}}
);
// }}}
end else begin : NO_READ_CHANNEL
// {{{
assign r_wb_cyc = 0;
assign r_wb_stb = 0;
assign r_wb_addr = 0;
//
assign S_AXI_ARREADY = 0;
assign S_AXI_RVALID = 0;
assign S_AXI_RID = 0;
assign S_AXI_RDATA = 0;
assign S_AXI_RLAST = 0;
assign S_AXI_RRESP = 0;
// }}}
end endgenerate
generate if (OPT_READONLY)
begin : ARB_RD
// {{{
assign o_wb_cyc = r_wb_cyc;
assign o_wb_stb = r_wb_stb;
assign o_wb_we = r_wb_we;
assign o_wb_addr = r_wb_addr;
assign o_wb_data = 0;
assign o_wb_sel = r_wb_sel;
assign r_wb_ack = i_wb_ack;
assign r_wb_stall= i_wb_stall;
assign r_wb_ack = i_wb_ack;
assign r_wb_err = i_wb_err;
// }}}
end else if (OPT_WRITEONLY)
begin : ARB_WR
// {{{
assign o_wb_cyc = w_wb_cyc;
assign o_wb_stb = w_wb_stb;
assign o_wb_we = w_wb_we;
assign o_wb_addr = w_wb_addr;
assign o_wb_data = w_wb_data;
assign o_wb_sel = w_wb_sel;
assign w_wb_ack = i_wb_ack;
assign w_wb_stall= i_wb_stall;
assign w_wb_ack = i_wb_ack;
assign w_wb_err = i_wb_err;
// }}}
end else begin : ARB_WB
// {{{
wbarbiter #(.DW(DW), .AW(AW))
readorwrite(S_AXI_ACLK, o_reset,
r_wb_cyc, r_wb_stb, r_wb_we, r_wb_addr, w_wb_data, r_wb_sel,
r_wb_ack, r_wb_stall, r_wb_err,
w_wb_cyc, w_wb_stb, w_wb_we, w_wb_addr, w_wb_data, w_wb_sel,
w_wb_ack, w_wb_stall, w_wb_err,
o_wb_cyc, o_wb_stb, o_wb_we, o_wb_addr, o_wb_data, o_wb_sel,
i_wb_ack, i_wb_stall, i_wb_err
);
// }}}
end endgenerate
assign o_reset = (S_AXI_ARESETN == 1'b0);
`ifdef FORMAL
`endif
endmodule