-
Notifications
You must be signed in to change notification settings - Fork 101
/
axi32axi.v
376 lines (361 loc) · 11 KB
/
axi32axi.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rtl/axi32axi.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Bridge from an AXI3 slave to an AXI4 master
//
// The goal here is to support as high a bus speed as possible, maintain
// burst support (if possible) and (more important) allow bus requests
// coming from the ARM within either the Zynq or one of Intel's SOC chips
// to speak with an AutoFPGA based design.
//
// Note that if you aren't using AutoFPGA, then you probably don't need
// this core--the vendor tools should be able to handle this conversion
// quietly and automatically for you.
//
// Notes:
// AxCACHE is remapped as per the AXI4 specification, since the values
// aren't truly equivalent. This forces a single clock delay in the Ax*
// channels and (likely) the W* channel as well as a system level
// consequence.
//
// AXI3 locking is not supported under AXI4. As per the AXI4 spec,
// AxLOCK is converteted from AXI3 to AXI4 by just dropping the high
// order bit.
//
// The WID input is ignored. Whether or not this input can be ignored
// is based upon how the ARM is implemented internally. After a bit
// of research into both Zynq's and Intel SOCs, this appears to be the
// appropriate answer here.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2019-2025, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
// }}}
// http://www.apache.org/licenses/LICENSE-2.0
// {{{
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module axi32axi #(
// {{{
parameter C_AXI_ID_WIDTH = 1,
parameter C_AXI_ADDR_WIDTH = 32,
parameter C_AXI_DATA_WIDTH = 32,
parameter OPT_REORDER_METHOD = 0,
parameter [0:0] OPT_TRANSFORM_AXCACHE = 1,
parameter [0:0] OPT_LOWPOWER = 0,
parameter [0:0] OPT_LOW_LATENCY = 0,
parameter WID_LGAWFIFO = 3,
parameter WID_LGWFIFO = 3
//
// }}}
) (
// {{{
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
//
// The AXI3 incoming/slave interface
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [3:0] S_AXI_AWLEN,
input wire [2:0] S_AXI_AWSIZE,
input wire [1:0] S_AXI_AWBURST,
input wire [1:0] S_AXI_AWLOCK,
input wire [3:0] S_AXI_AWCACHE,
input wire [2:0] S_AXI_AWPROT,
input wire [3:0] S_AXI_AWQOS,
//
//
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
//
//
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
//
//
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [3:0] S_AXI_ARLEN,
input wire [2:0] S_AXI_ARSIZE,
input wire [1:0] S_AXI_ARBURST,
input wire [1:0] S_AXI_ARLOCK,
input wire [3:0] S_AXI_ARCACHE,
input wire [2:0] S_AXI_ARPROT,
input wire [3:0] S_AXI_ARQOS,
//
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire S_AXI_RLAST,
output wire [1:0] S_AXI_RRESP,
//
//
// The AXI4 Master (outgoing) interface
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [7:0] M_AXI_AWLEN,
output wire [2:0] M_AXI_AWSIZE,
output wire [1:0] M_AXI_AWBURST,
output wire M_AXI_AWLOCK,
output wire [3:0] M_AXI_AWCACHE,
output wire [2:0] M_AXI_AWPROT,
output wire [3:0] M_AXI_AWQOS,
//
//
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
//
//
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [1:0] M_AXI_BRESP,
//
//
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [7:0] M_AXI_ARLEN,
output wire [2:0] M_AXI_ARSIZE,
output wire [1:0] M_AXI_ARBURST,
output wire M_AXI_ARLOCK,
output wire [3:0] M_AXI_ARCACHE,
output wire [2:0] M_AXI_ARPROT,
output wire [3:0] M_AXI_ARQOS,
//
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire M_AXI_RLAST,
input wire [1:0] M_AXI_RRESP
// }}}
);
// Register/net declarations
// {{{
// localparam ADDRLSB= $clog2(C_AXI_DATA_WIDTH)-3;
localparam IW=C_AXI_ID_WIDTH;
reg [3:0] axi4_awcache, axi4_arcache;
reg axi4_awlock, axi4_arlock;
wire awskd_ready;
wire wid_reorder_awready;
wire [IW-1:0] reordered_wid;
// }}}
// Write cache remapping
// {{{
always @(*)
case(S_AXI_AWCACHE)
4'b1010: axi4_awcache = 4'b1110;
4'b1011: axi4_awcache = 4'b1111;
default: axi4_awcache = S_AXI_AWCACHE;
endcase
// }}}
// AWLOCK
// {{{
always @(*)
axi4_awlock = S_AXI_AWLOCK[0];
// }}}
// AW Skid buffer
// {{{
generate if (OPT_TRANSFORM_AXCACHE)
begin : GEN_AWCACHE
// {{{
skidbuffer #(
.DW(C_AXI_ADDR_WIDTH + C_AXI_ID_WIDTH
+ 4 + 3 + 2 + 1+4+3+4),
.OPT_OUTREG(1'b1)
) awskid (
.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(S_AXI_AWVALID && wid_reorder_awready),
.o_ready(awskd_ready),
.i_data({ S_AXI_AWID, S_AXI_AWADDR, S_AXI_AWLEN,
S_AXI_AWSIZE, S_AXI_AWBURST,axi4_awlock,
axi4_awcache, S_AXI_AWPROT, S_AXI_AWQOS
}),
.o_valid(M_AXI_AWVALID), .i_ready(M_AXI_AWREADY),
.o_data({ M_AXI_AWID, M_AXI_AWADDR,
M_AXI_AWLEN[3:0],
M_AXI_AWSIZE,M_AXI_AWBURST,M_AXI_AWLOCK,
M_AXI_AWCACHE,M_AXI_AWPROT, M_AXI_AWQOS
})
);
assign M_AXI_AWLEN[7:4] = 4'h0;
assign S_AXI_AWREADY = awskd_ready && wid_reorder_awready;
// }}}
end else begin : IGN_AWCACHE
// {{{
assign M_AXI_AWVALID = S_AXI_AWVALID && wid_reorder_awready;
assign S_AXI_AWREADY = M_AXI_AWREADY;
assign M_AXI_AWID = S_AXI_AWID;
assign M_AXI_AWADDR = S_AXI_AWADDR;
assign M_AXI_AWLEN = { 4'h0, S_AXI_AWLEN };
assign M_AXI_AWSIZE = S_AXI_AWSIZE;
assign M_AXI_AWBURST = S_AXI_AWBURST;
assign M_AXI_AWLOCK = axi4_awlock;
assign M_AXI_AWCACHE = axi4_awcache;
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_AWQOS = S_AXI_AWQOS;
assign awskd_ready = 1;
// }}}
end endgenerate
// }}}
// Handle write channel de-interleaving
// {{{
axi3reorder #(
// {{{
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.OPT_METHOD(OPT_REORDER_METHOD),
.OPT_LOWPOWER(OPT_LOWPOWER),
.OPT_LOW_LATENCY(OPT_LOW_LATENCY),
.LGAWFIFO(WID_LGAWFIFO),
.LGWFIFO(WID_LGWFIFO)
// }}}
) widreorder (
// {{{
.S_AXI_ACLK(S_AXI_ACLK), .S_AXI_ARESETN(S_AXI_ARESETN),
// Incoming Write address ID
.S_AXI3_AWVALID(S_AXI_AWVALID && S_AXI_AWREADY),
.S_AXI3_AWREADY(wid_reorder_awready),
.S_AXI3_AWID(S_AXI_AWID),
// Incoming Write data info
.S_AXI3_WVALID(S_AXI_WVALID),
.S_AXI3_WREADY(S_AXI_WREADY),
.S_AXI3_WID(S_AXI_WID),
.S_AXI3_WDATA(S_AXI_WDATA),
.S_AXI3_WSTRB(S_AXI_WSTRB),
.S_AXI3_WLAST(S_AXI_WLAST),
// Outgoing write data channel
.M_AXI_WVALID(M_AXI_WVALID),
.M_AXI_WREADY(M_AXI_WREADY),
.M_AXI_WID(reordered_wid),
.M_AXI_WDATA(M_AXI_WDATA),
.M_AXI_WSTRB(M_AXI_WSTRB),
.M_AXI_WLAST(M_AXI_WLAST)
// }}}
);
// }}}
// Forward the B* channel return
// {{{
assign S_AXI_BVALID = M_AXI_BVALID;
assign M_AXI_BREADY = S_AXI_BREADY;
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
// }}}
// Read cache remapping
// {{{
always @(*)
case(S_AXI_ARCACHE)
4'b0110: axi4_arcache = 4'b1110;
4'b0111: axi4_arcache = 4'b1111;
default: axi4_arcache = S_AXI_ARCACHE;
endcase
// }}}
// ARLOCK
// {{{
always @(*)
axi4_arlock = S_AXI_ARLOCK[0];
// }}}
// AR Skid buffer
// {{{
generate if (OPT_TRANSFORM_AXCACHE)
begin : GEN_ARCACHE
// {{{
skidbuffer #(
.DW(C_AXI_ADDR_WIDTH + C_AXI_ID_WIDTH
+ 4 + 3 + 2 + 1+4+3+4),
.OPT_OUTREG(1'b1)
) arskid (
.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(S_AXI_ARVALID), .o_ready(S_AXI_ARREADY),
.i_data({ S_AXI_ARID, S_AXI_ARADDR, S_AXI_ARLEN,
S_AXI_ARSIZE, S_AXI_ARBURST, axi4_arlock,
axi4_arcache, S_AXI_ARPROT, S_AXI_ARQOS }),
.o_valid(M_AXI_ARVALID), .i_ready(M_AXI_ARREADY),
.o_data({ M_AXI_ARID, M_AXI_ARADDR, M_AXI_ARLEN[3:0],
M_AXI_ARSIZE, M_AXI_ARBURST, M_AXI_ARLOCK,
M_AXI_ARCACHE, M_AXI_ARPROT, M_AXI_ARQOS })
);
assign M_AXI_ARLEN[7:4] = 4'h0;
// }}}
end else begin : IGN_ARCACHE
// {{{
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = { 4'h0, S_AXI_ARLEN };
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = axi4_arlock;
assign M_AXI_ARCACHE = axi4_arcache;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
// }}}
end endgenerate
// }}}
// Forward the R* channel return
// {{{
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RRESP = M_AXI_RRESP;
// }}}
// Verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0, S_AXI_AWLOCK[1], S_AXI_ARLOCK[1],
reordered_wid };
// Verilator lint_on UNUSED
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal property section
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
//
// This design has not been formally verified.
//
`endif
endmodule