-
Notifications
You must be signed in to change notification settings - Fork 101
/
faxil_slave.v
805 lines (717 loc) · 24.1 KB
/
faxil_slave.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
////////////////////////////////////////////////////////////////////////////////
//
// Filename: bench/formal/faxil_slave.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose:
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2018-2025, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
// }}}
// http://www.apache.org/licenses/LICENSE-2.0
// {{{
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module faxil_slave #(
// {{{
parameter C_AXI_DATA_WIDTH = 32,// Fixed, width of the AXI R&W data
parameter C_AXI_ADDR_WIDTH = 28,// AXI Address width (log wordsize)
// F_OPT_XILINX, Certain Xilinx cores impose additional rules upon AXI
// write transactions, limiting how far the write and write address
// can be apart. If F_OPT_XILINX is set, these rules will be applied
// here as well. See in-line for more details.
parameter [0:0] F_OPT_XILINX = 1'b0,
// F_OPT_WRITE_ONLY, if set, will assume the master is always idle on
// te read channel, allowing you to test/focus on the write interface
parameter [0:0] F_OPT_WRITE_ONLY = 1'b0,
// F_OPT_READ_ONLY, if set, will assume the master is always idle on
// the write channel, while asserting that all of the associated returns
// and counters are zero
parameter [0:0] F_OPT_READ_ONLY = 1'b0,
// F_OPT_BRESP: Allow any type of write response. If set clear, then
// error responses are disallowed.
parameter [0:0] F_OPT_BRESP = 1'b1,
// F_OPT_RRESP, if cleared, will disallow error responses
parameter [0:0] F_OPT_RRESP = 1'b1,
// F_OPT_ASSUME_RESET, if set, will cause the design to *assume* the
// existence of a correct reset, rather than asserting it. It is
// appropriate anytime the reset logic is outside of the circuit being
// examined
parameter [0:0] F_OPT_ASSUME_RESET = 1'b1,
parameter [0:0] F_OPT_NO_RESET = 1'b1,
//
// F_OPT_ASYNC_RESET is for those designs that will reset the channels
// using an asynchronous reset. In these cases, the stability
// properties only apply when the async reset is not asserted.
// Likewise, when F_OPT_ASYNC_RESET is set, the reset assertions are
// applied *on the same clock cycle*, in addition to one cycle later.
parameter [0:0] F_OPT_ASYNC_RESET = 1'b0,
parameter F_OPT_COVER_BURST = 0,
// F_LGDEPTH is the number of bits necessary to count the maximum
// number of items in flight.
parameter F_LGDEPTH = 4,
// F_AXI_MAXWAIT is the maximum number of clock cycles the
// master should have to wait for a slave to raise its ready flag to
// accept a request. Set to zero for no limit.
parameter F_AXI_MAXWAIT = 12,
// F_AXI_MAXRSTALL is the maximum number of clock cycles the
// slave should have to wait with a return valid signal high, but
// while the master's return ready signal is low. Set to zero for no
// limit.
parameter F_AXI_MAXRSTALL= 12,
// F_AXI_MAXDELAY is the maximum number of clock cycles between request
// and response within the slave. Set this to zero for no limit.
parameter F_AXI_MAXDELAY = 12,
//
parameter [0:0] F_OPT_INITIAL = 1'b1,
//
localparam DW = C_AXI_DATA_WIDTH,
localparam AW = C_AXI_ADDR_WIDTH
// }}}
) (
// {{{
input wire i_clk, // System clock
input wire i_axi_reset_n,
// AXI write address channel signals
// {{{
input wire i_axi_awvalid,
input wire i_axi_awready,
input wire [AW-1:0] i_axi_awaddr, // Write address
input wire [2:0] i_axi_awprot, // Protection
// }}}
// AXI write data channel signals
// {{{
input wire i_axi_wvalid,
input wire i_axi_wready,
input wire [DW-1:0] i_axi_wdata, // Write data
input wire [DW/8-1:0] i_axi_wstrb, // Write strobes
// }}}
// AXI write response channel signals
// {{{
input wire i_axi_bvalid,
input wire i_axi_bready,
input wire [1:0] i_axi_bresp, // Wr response
// }}}
// AXI read address channel signals
// {{{
input wire i_axi_arvalid,
input wire i_axi_arready,
input wire [AW-1:0] i_axi_araddr, // Read address
input wire [2:0] i_axi_arprot, // Protection
// }}}
// AXI read data channel signals
// {{{
input wire i_axi_rvalid,
input wire i_axi_rready,
input wire [DW-1:0] i_axi_rdata, // Read data
input wire [1:0] i_axi_rresp, // Read response
// }}}
output reg [(F_LGDEPTH-1):0] f_axi_rd_outstanding,
output reg [(F_LGDEPTH-1):0] f_axi_wr_outstanding,
output reg [(F_LGDEPTH-1):0] f_axi_awr_outstanding
// }}}
);
localparam MAX_SLAVE_TIMEOUT = (F_AXI_MAXWAIT > F_AXI_MAXDELAY)
? (F_AXI_MAXWAIT) : F_AXI_MAXDELAY;
localparam MAX_TIMEOUT = (F_AXI_MAXRSTALL>MAX_SLAVE_TIMEOUT)
? (F_AXI_MAXRSTALL) : MAX_SLAVE_TIMEOUT;
localparam LGTIMEOUT = $clog2(MAX_TIMEOUT+1);
//*****************************************************************************
// Parameter declarations
//*****************************************************************************
//*****************************************************************************
// Internal register and wire declarations
//*****************************************************************************
// wire w_fifo_full;
wire axi_rd_ack, axi_wr_ack, axi_ard_req, axi_awr_req, axi_wr_req;
// axi_rd_err, axi_wr_err;
reg f_past_valid;
reg [3:0] f_reset_length;
// integer k;
assign axi_ard_req = (i_axi_arvalid)&&(i_axi_arready) && i_axi_reset_n;
assign axi_awr_req = (i_axi_awvalid)&&(i_axi_awready) && i_axi_reset_n;
assign axi_wr_req = (i_axi_wvalid )&&(i_axi_wready) && i_axi_reset_n;
//
assign axi_rd_ack = (i_axi_rvalid)&&(i_axi_rready) && i_axi_reset_n;
assign axi_wr_ack = (i_axi_bvalid)&&(i_axi_bready) && i_axi_reset_n;
// assign axi_rd_err = (axi_rd_ack)&&(i_axi_rresp[1]) && i_axi_reset_n;
// assign axi_wr_err = (axi_wr_ack)&&(i_axi_bresp[1]) && i_axi_reset_n;
`define SLAVE_ASSUME assume
`define SLAVE_ASSERT assert
//
// Setup
//
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
////////////////////////////////////////////////////////////////////////
//
// Reset properties
// {{{
////////////////////////////////////////////////////////////////////////
//
//
//
// Insist that the reset signal start out asserted (negative), and
// remain so for 16 clocks.
//
generate if (F_OPT_ASSUME_RESET)
begin : ASSUME_INITIAL_RESET
always @(*)
if (!f_past_valid)
assume(!i_axi_reset_n);
end else begin : ASSERT_INITIAL_RESET
always @(*)
if (!f_past_valid)
assert(!i_axi_reset_n);
end endgenerate
//
// If asserted, the reset must be asserted for a minimum of 16 clocks
initial f_reset_length = 0;
always @(posedge i_clk)
if (F_OPT_NO_RESET || i_axi_reset_n)
f_reset_length <= 0;
else if (!(&f_reset_length))
f_reset_length <= f_reset_length + 1'b1;
//
// If the reset is not generated within this particular core, then it
// can be assumed if F_OPT_ASSUME_RESET is set
generate if (F_OPT_ASSUME_RESET && !F_OPT_NO_RESET)
begin : ASSUME_RESET
always @(posedge i_clk)
if ((f_past_valid)&&(!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
assume(!i_axi_reset_n);
always @(*)
if ((f_reset_length > 0)&&(f_reset_length < 4'hf))
assume(!i_axi_reset_n);
end else if (!F_OPT_NO_RESET)
begin : ASSERT_RESET
always @(posedge i_clk)
if ((f_past_valid)&&(!$past(i_axi_reset_n))&&(!$past(&f_reset_length)))
assert(!i_axi_reset_n);
always @(*)
if ((f_reset_length > 0)&&(f_reset_length < 4'hf))
assert(!i_axi_reset_n);
end endgenerate
//
// All of the xVALID signals *MUST* be set low on the clock following
// a reset. Not in the spec, but also checked here is that they must
// also be set low initially.
always @(posedge i_clk)
if ((!f_past_valid && F_OPT_INITIAL)
||(f_past_valid && !$past(i_axi_reset_n)))
begin
`SLAVE_ASSUME(!i_axi_arvalid);
`SLAVE_ASSUME(!i_axi_awvalid);
`SLAVE_ASSUME(!i_axi_wvalid);
//
`SLAVE_ASSERT(!i_axi_bvalid);
`SLAVE_ASSERT(!i_axi_rvalid);
end
generate if (F_OPT_ASYNC_RESET)
begin
always @(*)
if (!i_axi_reset_n)
begin
`SLAVE_ASSUME(!i_axi_arvalid);
`SLAVE_ASSUME(!i_axi_awvalid);
`SLAVE_ASSUME(!i_axi_wvalid);
//
`SLAVE_ASSERT(!i_axi_bvalid);
`SLAVE_ASSERT(!i_axi_rvalid);
end
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// xRESP checking
// {{{
////////////////////////////////////////////////////////////////////////
always @(*)
if ((i_axi_bvalid)&&(!F_OPT_BRESP)&&(F_OPT_INITIAL || i_axi_reset_n))
`SLAVE_ASSERT(i_axi_bresp == 0);
always @(*)
if ((i_axi_rvalid)&&(!F_OPT_RRESP)&&(F_OPT_INITIAL || i_axi_reset_n))
`SLAVE_ASSERT(i_axi_rresp == 0);
always @(*)
if (i_axi_bvalid&&(F_OPT_INITIAL || i_axi_reset_n))
`SLAVE_ASSERT(i_axi_bresp != 2'b01); // Exclusive access not allowed
always @(*)
if (i_axi_rvalid&&(F_OPT_INITIAL || i_axi_reset_n))
`SLAVE_ASSERT(i_axi_rresp != 2'b01); // Exclusive access not allowed
// }}}
////////////////////////////////////////////////////////////////////////
//
// Stability properties--what happens if valid and not ready
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Assume any response from the bus will not change prior to that
// response being accepted
always @(posedge i_clk)
if ((f_past_valid)&&($past(i_axi_reset_n))
&&(!F_OPT_ASYNC_RESET || i_axi_reset_n))
begin
// Write address channel
if ((f_past_valid)&&($past(i_axi_awvalid && !i_axi_awready)))
begin
`SLAVE_ASSUME(i_axi_awvalid);
`SLAVE_ASSUME($stable(i_axi_awaddr));
`SLAVE_ASSUME($stable(i_axi_awprot));
end
// Write data channel
if ((f_past_valid && (!F_OPT_ASYNC_RESET || i_axi_reset_n))
&&($past(i_axi_wvalid && !i_axi_wready)))
begin
`SLAVE_ASSUME(i_axi_wvalid);
`SLAVE_ASSUME($stable(i_axi_wstrb));
`SLAVE_ASSUME($stable(i_axi_wdata));
end
// Incoming Read address channel
if ((f_past_valid && (!F_OPT_ASYNC_RESET || i_axi_reset_n))
&&($past(i_axi_arvalid && !i_axi_arready)))
begin
`SLAVE_ASSUME(i_axi_arvalid);
`SLAVE_ASSUME($stable(i_axi_araddr));
`SLAVE_ASSUME($stable(i_axi_arprot));
end
if ((f_past_valid && (!F_OPT_ASYNC_RESET || i_axi_reset_n))
&&($past(i_axi_rvalid && !i_axi_rready)))
begin
`SLAVE_ASSERT(i_axi_rvalid);
`SLAVE_ASSERT($stable(i_axi_rresp));
`SLAVE_ASSERT($stable(i_axi_rdata));
end
if ((f_past_valid && (!F_OPT_ASYNC_RESET || i_axi_reset_n))
&&($past(i_axi_bvalid && !i_axi_bready)))
begin
`SLAVE_ASSERT(i_axi_bvalid);
`SLAVE_ASSERT($stable(i_axi_bresp));
end
end
// Nothing should be returned or requested on the first clock
generate if (F_OPT_INITIAL)
begin : INITIAL_VALUE_CHECKS
initial `SLAVE_ASSUME(!i_axi_arvalid);
initial `SLAVE_ASSUME(!i_axi_awvalid);
initial `SLAVE_ASSUME(!i_axi_wvalid);
//
initial `SLAVE_ASSERT(!i_axi_bvalid);
initial `SLAVE_ASSERT(!i_axi_rvalid);
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
//
// Insist upon a maximum delay before a request is accepted
//
//
////////////////////////////////////////////////////////////////////////
//
generate if (F_AXI_MAXWAIT > 0)
begin : CHECK_STALL_COUNT
reg [LGTIMEOUT-1:0] f_axi_awstall,
f_axi_wstall,
f_axi_arstall;
//
// AXI write address channel
//
// Count the number of times AWVALID is true while AWREADY
// is false. These are stalls, and we want to insist on a
// minimum number of them. However, if BVALID && !BREADY,
// then there's a reason for not accepting anything more.
// Similarly, many cores will only ever accept one request
// at a time, hence we won't count things as stalls if
// WR-PENDING > 0.
initial f_axi_awstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_awvalid)||(i_axi_awready)
||(i_axi_bvalid))
f_axi_awstall <= 0;
else if ((f_axi_awr_outstanding >= f_axi_wr_outstanding)
&&(i_axi_awvalid && !i_axi_wvalid))
// If we are waiting for the write channel to be valid
// then don't count stalls
f_axi_awstall <= 0;
else
f_axi_awstall <= f_axi_awstall + 1'b1;
always @(*)
`SLAVE_ASSERT(f_axi_awstall < F_AXI_MAXWAIT);
//
// AXI write data channel
//
// Count the number of clock cycles that the write data
// channel is stalled, that is while WVALID && !WREADY.
// Since things can back up if BVALID & !BREADY, we avoid
// counting clock cycles in that circumstance
initial f_axi_wstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_wvalid)||(i_axi_wready)
||(i_axi_bvalid))
f_axi_wstall <= 0;
else if ((f_axi_wr_outstanding >= f_axi_awr_outstanding)
&&(!i_axi_awvalid && i_axi_wvalid))
// If we are waiting for the write address channel
// to be valid, then don't count stalls
f_axi_wstall <= 0;
else
f_axi_wstall <= f_axi_wstall + 1'b1;
always @(*)
`SLAVE_ASSERT(f_axi_wstall < F_AXI_MAXWAIT);
//
// AXI read address channel
//
// Similar to the first two above, once the master raises
// ARVALID, insist that the slave respond within a minimum
// number of clock cycles. Exceptions include any time
// RVALID is true, since that can back up the whole system,
// and any time the number of bursts is greater than zero,
// since many slaves can only accept one request at a time.
initial f_axi_arstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_arvalid)||(i_axi_arready)
||(i_axi_rvalid))
f_axi_arstall <= 0;
else
f_axi_arstall <= f_axi_arstall + 1'b1;
always @(*)
`SLAVE_ASSERT(f_axi_arstall < F_AXI_MAXWAIT);
end endgenerate
////////////////////////////////////////////////////////////////////////
//
//
// Insist upon a maximum delay before any response is accepted
//
// These are separate from the earlier ones, in case you wish to
// control them separately. For example, an interconnect might be
// forced to let a channel wait indefinitely for access, but it might
// not be appropriate to require the response to be able to wait
// indefinitely as well
//
////////////////////////////////////////////////////////////////////////
//
generate if (F_AXI_MAXRSTALL > 0)
begin : CHECK_RESPONSE_STALLS
reg [LGTIMEOUT-1:0] f_axi_bstall,
f_axi_rstall;
// AXI write response channel
//
// Insist on a maximum number of clocks that BVALID can be
// high while BREADY is low
initial f_axi_bstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_bvalid)||(i_axi_bready))
f_axi_bstall <= 0;
else
f_axi_bstall <= f_axi_bstall + 1'b1;
always @(*)
`SLAVE_ASSUME(f_axi_bstall < F_AXI_MAXRSTALL);
// AXI read response channel
//
// Insist on a maximum number of clocks that RVALID can be
// high while RREADY is low
initial f_axi_rstall = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(!i_axi_rvalid)||(i_axi_rready))
f_axi_rstall <= 0;
else
f_axi_rstall <= f_axi_rstall + 1'b1;
always @(*)
`SLAVE_ASSUME(f_axi_rstall < F_AXI_MAXRSTALL);
end endgenerate
////////////////////////////////////////////////////////////////////////
//
//
// Xilinx extensions/guarantees to the AXI protocol
//
// 1. The address line will never be more than two clocks ahead of
// the write data channel, and
// 2. The write data channel will never be more than one clock
// ahead of the address channel.
//
//
////////////////////////////////////////////////////////////////////////
//
//
generate if (F_OPT_XILINX)
begin
// Rule number one:
always @(posedge i_clk)
if ((i_axi_reset_n)&&($past(i_axi_reset_n))
&&($past(i_axi_awvalid && !i_axi_wvalid,2))
&&($past(f_axi_awr_outstanding>=f_axi_wr_outstanding,2))
&&(!$past(i_axi_wvalid)))
`SLAVE_ASSUME(i_axi_wvalid);
always @(posedge i_clk)
if ((i_axi_reset_n)
&&(f_axi_awr_outstanding > 1)
&&(f_axi_awr_outstanding-1 > f_axi_wr_outstanding))
`SLAVE_ASSUME(i_axi_wvalid);
always @(posedge i_clk)
if ((i_axi_reset_n)
&&($past(f_axi_awr_outstanding > f_axi_wr_outstanding))
&&(!$past(axi_wr_req)))
`SLAVE_ASSUME(i_axi_wvalid);
// Rule number two:
always @(posedge i_clk)
if ((i_axi_reset_n)&&(f_axi_awr_outstanding < f_axi_wr_outstanding))
`SLAVE_ASSUME(i_axi_awvalid);
end endgenerate
////////////////////////////////////////////////////////////////////////
//
//
// Count outstanding transactions. With these measures, we count
// once per any burst.
//
//
////////////////////////////////////////////////////////////////////////
//
//
//
// Count outstanding write address channel requests
initial f_axi_awr_outstanding = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
f_axi_awr_outstanding <= 0;
else case({ (axi_awr_req), (axi_wr_ack) })
2'b10: f_axi_awr_outstanding <= f_axi_awr_outstanding + 1'b1;
2'b01: f_axi_awr_outstanding <= f_axi_awr_outstanding - 1'b1;
default: begin end
endcase
//
// Count outstanding write data channel requests
initial f_axi_wr_outstanding = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
f_axi_wr_outstanding <= 0;
else case({ (axi_wr_req), (axi_wr_ack) })
2'b01: f_axi_wr_outstanding <= f_axi_wr_outstanding - 1'b1;
2'b10: f_axi_wr_outstanding <= f_axi_wr_outstanding + 1'b1;
default: begin end
endcase
//
// Count outstanding read requests
initial f_axi_rd_outstanding = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
f_axi_rd_outstanding <= 0;
else case({ (axi_ard_req), (axi_rd_ack) })
2'b01: f_axi_rd_outstanding <= f_axi_rd_outstanding - 1'b1;
2'b10: f_axi_rd_outstanding <= f_axi_rd_outstanding + 1'b1;
default: begin end
endcase
//
// Do not let the number of outstanding requests overflow
always @(posedge i_clk)
`SLAVE_ASSERT(f_axi_wr_outstanding < {(F_LGDEPTH){1'b1}});
always @(posedge i_clk)
`SLAVE_ASSERT(f_axi_awr_outstanding < {(F_LGDEPTH){1'b1}});
always @(posedge i_clk)
`SLAVE_ASSERT(f_axi_rd_outstanding < {(F_LGDEPTH){1'b1}});
//
// That means that requests need to stop when we're almost full
always @(posedge i_clk)
if ((F_OPT_INITIAL || i_axi_reset_n) && f_axi_awr_outstanding == { {(F_LGDEPTH-1){1'b1}}, 1'b0} )
assert(!i_axi_awready);
always @(posedge i_clk)
if ((F_OPT_INITIAL || i_axi_reset_n) && f_axi_wr_outstanding == { {(F_LGDEPTH-1){1'b1}}, 1'b0} )
assert(!i_axi_wready);
always @(posedge i_clk)
if ((F_OPT_INITIAL || i_axi_reset_n) && f_axi_rd_outstanding == { {(F_LGDEPTH-1){1'b1}}, 1'b0} )
assert(!i_axi_arready);
////////////////////////////////////////////////////////////////////////
//
//
// Insist that all responses are returned in less than a maximum delay
// In this case, we count responses within a burst, rather than entire
// bursts.
//
//
// A unique feature to the backpressure mechanism within AXI is that
// we have to reset our delay counters in the case of any push back,
// since the response can't move forward if the master isn't (yet)
// ready for it.
//
////////////////////////////////////////////////////////////////////////
generate if (F_AXI_MAXDELAY > 0)
begin : CHECK_MAX_DELAY
reg [LGTIMEOUT-1:0] f_axi_wr_ack_delay,
f_axi_rd_ack_delay;
//
// Count the clock cycles a write request (address + data) has
// been outstanding and without any response
initial f_axi_wr_ack_delay = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(i_axi_bvalid)
||(f_axi_awr_outstanding==0)
||(f_axi_wr_outstanding==0))
f_axi_wr_ack_delay <= 0;
else if (f_axi_wr_outstanding > 0)
f_axi_wr_ack_delay <= f_axi_wr_ack_delay + 1'b1;
//
// Count the clock cycles that any read request has been
// outstanding, but without any response.
initial f_axi_rd_ack_delay = 0;
always @(posedge i_clk)
if ((!i_axi_reset_n)||(i_axi_rvalid)||(f_axi_rd_outstanding==0))
f_axi_rd_ack_delay <= 0;
else
f_axi_rd_ack_delay <= f_axi_rd_ack_delay + 1'b1;
//
// Assert that write responses will be returned in a timely
// fashion
always @(*)
`SLAVE_ASSERT(f_axi_wr_ack_delay < F_AXI_MAXDELAY);
//
// Assert that read responses will be returned in a timely
// fashion
always @(*)
`SLAVE_ASSERT(f_axi_rd_ack_delay < F_AXI_MAXDELAY);
end endgenerate
////////////////////////////////////////////////////////////////////////
//
//
// Assume acknowledgements must follow requests
//
// The f_axi*outstanding counters count the number of requests. No
// acknowledgment should issue without a pending request
// burst. Further, the spec is clear: you can't acknowledge something
// on the same clock you get the request. There must be at least one
// clock delay.
//
//
////////////////////////////////////////////////////////////////////////
//
// AXI write response channel
//
always @(posedge i_clk)
if (i_axi_bvalid && (F_OPT_INITIAL || i_axi_reset_n))
begin
// No BVALID w/o an outstanding request
`SLAVE_ASSERT(f_axi_awr_outstanding > 0);
`SLAVE_ASSERT(f_axi_wr_outstanding > 0);
end
//
// AXI read data channel signals
//
always @(posedge i_clk)
if (i_axi_rvalid && (F_OPT_INITIAL || i_axi_reset_n))
// No RVALID w/o an outstanding request
`SLAVE_ASSERT(f_axi_rd_outstanding > 0);
////////////////////////////////////////////////////////////////////////
//
//
// F_OPT_WRITE_ONLY or F_OPT_READ_ONLY
//
// Optionally disable either read or write channels (or both??)
//
//
////////////////////////////////////////////////////////////////////////
//
//
initial assert((!F_OPT_WRITE_ONLY)||(!F_OPT_READ_ONLY));
generate if (F_OPT_WRITE_ONLY)
begin : NO_READS
// If there are no read requests (assumed), there should be
// no read responses
always @(*)
`SLAVE_ASSUME(i_axi_arvalid == 0);
always @(*)
assert(f_axi_rd_outstanding == 0);
always @(*)
`SLAVE_ASSERT(i_axi_rvalid == 0);
end endgenerate
generate if (F_OPT_READ_ONLY)
begin : NO_WRITES
// If there are no write requests (assumed, address or data),
// there should be no read responses
always @(*)
`SLAVE_ASSUME(i_axi_awvalid == 0);
always @(*)
`SLAVE_ASSUME(i_axi_wvalid == 0);
always @(*)
assert(f_axi_wr_outstanding == 0);
always @(*)
assert(f_axi_awr_outstanding == 0);
always @(*)
`SLAVE_ASSERT(i_axi_bvalid == 0);
end endgenerate
////////////////////////////////////////////////////////////////////////
//
//
// Cover properties
//
// We'll use this to prove that transactions are even possible, and
// hence that we haven't so constrained the bus that nothing can take
// place.
//
//
////////////////////////////////////////////////////////////////////////
//
// AXI write response channel
//
generate if (!F_OPT_READ_ONLY)
begin
always @(posedge i_clk)
// Make sure we can get a write acknowledgment
cover((i_axi_bvalid)&&(i_axi_bready));
end endgenerate
//
// AXI read response channel
//
generate if (!F_OPT_WRITE_ONLY)
begin
always @(posedge i_clk)
// Make sure we can get a response from the read channel
cover((i_axi_rvalid)&&(i_axi_rready));
end endgenerate
generate if (!F_OPT_READ_ONLY && F_OPT_COVER_BURST > 0)
begin : COVER_WRITE_BURSTS
reg [31:0] cvr_writes;
initial cvr_writes = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
cvr_writes <= 0;
else if (i_axi_bvalid && i_axi_bready && i_axi_bresp == 2'b00
&& !(&cvr_writes))
cvr_writes <= cvr_writes + 1;
always @(*)
cover(cvr_writes == F_OPT_COVER_BURST);
end endgenerate
generate if (!F_OPT_WRITE_ONLY && F_OPT_COVER_BURST > 0)
begin : COVER_READ_BURSTS
reg [31:0] cvr_reads;
initial cvr_reads = 0;
always @(posedge i_clk)
if (!i_axi_reset_n)
cvr_reads <= 0;
else if (i_axi_rvalid && i_axi_rready && i_axi_rresp == 2'b00
&& !(&cvr_reads))
cvr_reads <= cvr_reads + 1;
always @(*)
cover(cvr_reads == F_OPT_COVER_BURST);
end endgenerate
`undef SLAVE_ASSUME
`undef SLAVE_ASSERT
endmodule