-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.sh
108 lines (102 loc) · 2.76 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Compare LORA and QLORA on Alpaca dataset with same effective batch size ~32, lr sched, and lr.
# Reference for some hyperparams: https://arxiv.org/abs/2305.14314
# LORA (pure bf16)
# https://wandb.ai/answerdotai/fsdp/runs/gb34o6p4?workspace=user-k-answer-ai
# NOTE: Loss curve is flat - 1) use lower lr ? 2) start immediate annealing get_cosine_one_cycle_scheduler(..., min_lr_fraction=0.0)
python train.py \
--model_name meta-llama/Llama-2-7b-hf \
--gradient_accumulation_steps 2 \
--batch_size 8 \
--context_length 512 \
--num_epochs 1 \
--train_type lora \
--use_gradient_checkpointing False \
--use_cpu_offload False \
--log_to wandb \
--dataset alpaca \
--verbose false \
--save_model true \
--output_dir ~/models/lora_alpaca
# QLORA (pure bf16)
python train.py \
--model_name meta-llama/Llama-2-7b-hf \
--gradient_accumulation_steps 2 \
--batch_size 8 \
--context_length 512 \
--num_epochs 1 \
--train_type qlora \
--use_gradient_checkpointing False \
--use_cpu_offload False \
--log_to wandb \
--dataset alpaca \
--verbose false \
--save_model true \
--output_dir ~/models/qlora_alpaca
# QLORA (autocast bf16)
python train.py \
--model_name meta-llama/Llama-2-7b-hf \
--precision bf16_buffers_autocast \
--gradient_accumulation_steps 2 \
--batch_size 8 \
--context_length 512 \
--num_epochs 1 \
--train_type qlora \
--use_gradient_checkpointing False \
--use_cpu_offload False \
--log_to wandb \
--dataset alpaca \
--verbose false \
--save_model true \
--output_dir ~/models/qlora_alpaca_autocast_buffers_bf16
# stop instance
# requires: az login --use-device-code
az vm deallocate -g resource-group-us-east -n a100-duo
export CUDA_VISIBLE_DEVICES=3,4
python train.py \
--world_size 2 \
--model_name meta-llama/Llama-2-7b-hf \
--gradient_accumulation_steps 2 \
--batch_size 1 \
--context_length 512 \
--num_epochs 1 \
--sharding_strategy full_shard \
--precision bf16 \
--train_type hqq_lora \
--use_gradient_checkpointing true \
--use_cpu_offload false \
--log_to stdout \
--dataset alpaca \
--verbose true
export CUDA_VISIBLE_DEVICES=4,5
python train.py \
--world_size 2 \
--master_port 12356 \
--model_name meta-llama/Llama-2-7b-hf \
--gradient_accumulation_steps 2 \
--batch_size 1 \
--context_length 512 \
--num_epochs 1 \
--sharding_strategy full_shard \
--precision bf16 \
--train_type hqq_lora \
--use_gradient_checkpointing true \
--use_cpu_offload false \
--log_to stdout \
--dataset dummy \
--verbose true
export CUDA_VISIBLE_DEVICES=3,4
python train.py \
--world_size 3 \
--model_name meta-llama/Llama-2-70b-hf \
--gradient_accumulation_steps 2 \
--batch_size 1 \
--context_length 4096 \
--num_epochs 1 \
--sharding_strategy full_shard \
--precision bf16 \
--train_type hqq_dora \
--use_gradient_checkpointing true \
--use_cpu_offload false \
--log_to wandb \
--dataset dummy \
--verbose true