-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhf_train.py
96 lines (86 loc) · 2.83 KB
/
hf_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from datasets import load_dataset
import torch, os
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
from peft import LoraConfig
from trl import SFTTrainer
from transformers import TrainingArguments
local_rank = os.getenv("LOCAL_RANK")
device_string = "cuda:" + str(local_rank)
# Load the dataset
dataset_name = "timdettmers/openassistant-guanaco"
dataset = load_dataset(dataset_name, split="train")
# Load the model + tokenizer
model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True,
use_cache = False,
device_map={'':device_string}
)
# PEFT config
lora_alpha = 16
lora_dropout = 0.1
lora_r = 64
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_r,
bias="none",
task_type="CAUSAL_LM",
target_modules=["k_proj", "q_proj", "v_proj", "up_proj", "down_proj", "gate_proj"]
)
# Args
max_seq_length = 512
output_dir = "./results"
per_device_train_batch_size = 4
gradient_accumulation_steps = 4
optim = "adamw_hf"
save_steps = 10
logging_steps = 1
learning_rate = 2e-4
max_grad_norm = 0.3
max_steps = 311 # Approx the size of guanaco at bs 8, ga 2, 2 GPUs.
warmup_ratio = 0.1
lr_scheduler_type = "cosine"
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
fp16=True,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=False, # Otherwise weird loss pattern (see https://github.com/artidoro/qlora/issues/84#issuecomment-1572408347, https://github.com/artidoro/qlora/issues/228, https://wandb.ai/answerdotai/fsdp_qlora/runs/snhj0eyh)
lr_scheduler_type=lr_scheduler_type,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant':False}, # Needed for DDP
report_to="wandb",
)
# Trainer
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=max_seq_length,
tokenizer=tokenizer,
args=training_arguments,
)
# Not sure if needed but noticed this in https://colab.research.google.com/drive/1t3exfAVLQo4oKIopQT1SKxK4UcYg7rC1#scrollTo=7OyIvEx7b1GT
for name, module in trainer.model.named_modules():
if "norm" in name:
module = module.to(torch.float32)
# Train
trainer.train()