-
Notifications
You must be signed in to change notification settings - Fork 3
/
RegressionConstructSaveLoadRun.java
86 lines (73 loc) · 2.93 KB
/
RegressionConstructSaveLoadRun.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Regression2.java
* Copyright (C) 2019 University of Waikato, Hamilton, NZ
*/
package moaflow.examples;
import moaflow.core.Operator;
import moaflow.core.Utils;
import moaflow.io.DefaultFlowReader;
import moaflow.io.DefaultFlowWriter;
import moaflow.sink.Console;
import moaflow.sink.MeasurementsToCSV;
import moaflow.source.AbstractSource;
import moaflow.source.InstanceSource;
import moaflow.transformer.EvaluateRegressor;
import moaflow.transformer.InstanceFilter;
import moa.classifiers.functions.SGD;
import moa.streams.filters.ReplacingMissingValuesFilter;
/**
* Example flow for regression.
*
* @author FracPete (fracpete at waikato dot ac dot nz)
*/
public class RegressionConstructSaveLoadRun {
public static void main(String[] args) throws Exception {
String regressor = SGD.class.getName();
InstanceSource source;
source = new InstanceSource();
source.setGenerator("moa.streams.generators.RandomRBFGenerator -a 20");
source.numInstances.setValue(100000);
ReplacingMissingValuesFilter replace = new ReplacingMissingValuesFilter();
InstanceFilter filter = new InstanceFilter();
filter.filter.setCurrentObject(replace);
source.subscribe(filter);
EvaluateRegressor eval = new EvaluateRegressor();
eval.everyNth.setValue(10000);
eval.setRegressor(regressor);
filter.subscribe(eval);
Console console = new Console();
console.outputSeparator.setValue("------");
eval.subscribe(console);
MeasurementsToCSV measurements = new MeasurementsToCSV();
measurements.outputFile.setValue(System.getProperty("java.io.tmpdir") + "/moa.csv");
eval.subscribe(measurements);
String flowfile = System.getProperty("java.io.tmpdir") + "/moa-regression.flow";
DefaultFlowWriter writer = new DefaultFlowWriter();
String msg = writer.write(flowfile, source);
if (msg != null)
System.err.println("Failed to store flow:\n" + msg);
else
System.out.println("Flow written to: " + flowfile);
DefaultFlowReader reader = new DefaultFlowReader();
Operator flow = reader.read(flowfile);
System.out.println("Flow read from: " + flowfile);
System.out.println(Utils.toTree(flow));
System.out.println("Executing flow");
if (flow instanceof AbstractSource)
((AbstractSource) flow).start();
}
}