forked from tommccoy1/tpdn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_maker.py
58 lines (45 loc) · 2.42 KB
/
example_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pickle
import numpy as np
from random import shuffle
import sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--max_seq_length", help="maximum sequence length", type=int, default=6)
parser.add_argument("--min_seq_length", help="minimum sequence length", type=int, default=1)
parser.add_argument("--vocab_size", help="vocabulary size", type=int, default=10)
parser.add_argument("--num_train", help="number of training examples to generate", type=int, default=40000)
parser.add_argument("--num_dev", help="number of dev examples to generate", type=int, default=5000)
parser.add_argument("--num_test", help="number of test examples to generate", type=int, default=5000)
parser.add_argument("--prefix", help="prefix for saving the generated values", type=str, default="digits")
args = parser.parse_args()
# Creates a training set, dev set, and test set
# of size num_train, num_dev, and num_test
# Each example consists of a sequence of digits of
# length seq_length, where each digit is randomly
# drawn from 0 to (vocab_size - 1)
def generate_examples(min_seq_length, max_seq_length, vocab_size, num_train, num_dev, num_test):
train_set = []
dev_set = []
test_set = []
list_examples = []
dict_examples = {}
num_examples = 0
while num_examples < num_train + num_dev + num_test:
seq_length = min_seq_length + np.random.randint(max_seq_length - min_seq_length + 1)
seq = tuple(np.random.randint(vocab_size,size=seq_length))
if seq not in dict_examples:
list_examples.append(seq) #(seq, range(len(seq)), seq))
dict_examples[seq] = 1
num_examples += 1
shuffle(list_examples)
train_set = list_examples[:num_train]
dev_set = list_examples[num_train:num_train + num_dev]
test_set = list_examples[num_train + num_dev:]
return train_set, dev_set, test_set
train_set, dev_set, test_set = generate_examples(args.min_seq_length, args.max_seq_length, args.vocab_size, args.num_train, args.num_dev, args.num_test)
with open('data/' + args.prefix + '.train.pkl', 'wb') as handle:
pickle.dump(train_set, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('data/' + args.prefix + '.dev.pkl', 'wb') as handle:
pickle.dump(dev_set, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('data/' + args.prefix + '.test.pkl', 'wb') as handle:
pickle.dump(test_set, handle, protocol=pickle.HIGHEST_PROTOCOL)