-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathflops.py
63 lines (51 loc) · 1.86 KB
/
flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# -*- coding: utf-8 -*-
# @Date : 2019-10-01
# @Author : Xinyu Gong ([email protected])
# @Link : None
# @Version : 0.0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cfg
import models_search
import datasets
from functions import train, validate, LinearLrDecay, load_params, copy_params, cur_stages
from utils.utils import set_log_dir, save_checkpoint, create_logger
from utils.inception_score import _init_inception
from utils.fid_score import create_inception_graph, check_or_download_inception
import torch
import os
import numpy as np
import torch.nn as nn
from tensorboardX import SummaryWriter
from tqdm import tqdm
from copy import deepcopy
from adamw import AdamW
import random
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
from models_search.ViT_8_8 import matmul, count_matmul
def main():
args = cfg.parse_args()
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
torch.backends.cudnn.deterministic = True
# set tf env
# _init_inception()
# inception_path = check_or_download_inception(None)
# create_inception_graph(inception_path)
# # import network
gen_net = eval('models_search.'+args.gen_model+'.Generator')(args=args).cuda()
dis_net = eval('models_search.'+args.dis_model+'.Discriminator')(args=args).cuda()
gen_net.set_arch(args.arch, cur_stage=2)
import thop, math
dummy_data = (1, 1024)
macs, params = thop.profile(gen_net, inputs=(torch.randn(dummy_data).cuda(), ),
custom_ops={matmul: count_matmul})
flops, params = thop.clever_format([macs, params], "%.3f")
print('Flops (GB):\t', flops)
print('Params Size (MB):\t', params)
if __name__ == '__main__':
main()