Skip to content

Latest commit

 

History

History
50 lines (41 loc) · 2.22 KB

README.md

File metadata and controls

50 lines (41 loc) · 2.22 KB

educ7610

The goal of educ7610 is to make several aspects of the Regression course (EDUC/PSY 7610) at Utah State University more accessible. Specifically, it provides the data from Darlington and Hayes’ book “Regression Analysis and Linear Models”, a syntax to perform diagnostics and Johnson-Neyman, odds ratios from logistic regression, among other things. In conjunction with packages like interactions and the easystats group of packages, this package can make regression analyses more straightforward.

Installation

You can install the development version from GitHub with:

# install.packages("remotes")
remotes::install_github("tysonstanley/educ7610")

Example

This is a basic example which shows you how to solve a common problem:

library(educ7610)
#> ── educ7610 0.2.0 ────────────────────────────────────────────────── learn more at tysonbarrett.com ──
#> ✔ educ7610 attached
#> ✔ No potential conflicts found
data("poverty")  ## load the poverty data set

model <- lm(TeenBirth ~ ViolentCrime + poverty_pct,
           data = poverty)
diagnostics(model) %>% head()
#>   TeenBirth ViolentCrime poverty_pct     pred      resid      dfb.1_
#> 1      54.5         11.2        20.1 54.97777 -0.4777688  0.01140240
#> 2      39.5          9.1         7.1 32.93430  6.5656964  0.21476505
#> 3      61.2         10.4        16.1 48.13306 13.0669381 -0.08407140
#> 4      59.9         10.4        14.9 46.17653 13.7234707 -0.01726762
#> 5      41.1         11.2        16.7 49.43426 -8.3342598  0.07141738
#> 6      47.0          5.8         8.8 34.37397 12.6260347  0.29388664
#>       dfb.VlnC    dfb.pvr_       dffit     cov.r       cook.d        hat
#> 1  0.003853716 -0.01434251 -0.01704369 1.1535952 9.888197e-05 0.07683369
#> 2  0.108941094 -0.20044139  0.23370808 1.1046067 1.833345e-02 0.07562858
#> 3 -0.011028702  0.14825406  0.28167070 0.9325356 2.558198e-02 0.02937639
#> 4  0.024749616  0.07786167  0.26245140 0.9118951 2.209091e-02 0.02328784
#> 5  0.002990049 -0.10973056 -0.19000614 1.0324334 1.202486e-02 0.03364566
#> 6  0.062618745 -0.23177500  0.32712068 0.9529815 3.460873e-02 0.04150863