-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
370 lines (323 loc) · 9.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import re
import json
import numpy as np
import pandas as pd
import sys
from llms_oai import LLMs
import math
router_method = {
'threshold': {
'method': 'threshold',
'threshold': 0.5
},
'delta_threshold': {
'method': 'delta_threshold',
'threshold': 0.2
},
'svm': {
'method': 'svm',
'svm_router_train_file': 'logits.json',
'trained_model_path': './svm_router_top1000.pkl',
'topK': 1000
},
'normal': {
'method': 'normal'
},
'none': {
'method': 'none'
}
}
collabrate_method = {
'ContrastiveDecoding': {
'method': 'ContrastiveDecoding',
'alpha': 0.1,
'beta': 0.5
},
'SpeculativeDecoding': {
'method': 'SpeculativeDecoding',
'K': 5
},
'EmulatorFineTuning': {
'method': 'EmulatorFineTuning',
'alpha': 1.0
},
'OracleDecoding': {
'method': 'OracleDecoding'
}
}
def test_answer_gsm8k_(pred_str, ans_str):
pattern = '\d*\.?\d+'
pred = re.findall(pattern, pred_str)
if(len(pred) >= 1):
# print(pred_str)
pred = pred[-1]
gold = re.findall(pattern, ans_str)
# print(ans_str)
gold = gold[-1]
return pred == gold
else: return False
MMLU_TASKS = [
'abstract_algebra',
'anatomy',
'astronomy',
'business_ethics',
'clinical_knowledge',
'college_biology',
'college_chemistry',
'college_computer_science',
'college_mathematics',
'college_medicine',
'college_physics',
'computer_security',
'conceptual_physics',
'econometrics',
'electrical_engineering',
'elementary_mathematics',
'formal_logic',
'global_facts',
'high_school_biology',
'high_school_chemistry',
'high_school_computer_science',
'high_school_european_history',
'high_school_geography',
'high_school_government_and_politics',
'high_school_macroeconomics',
'high_school_mathematics',
'high_school_microeconomics',
'high_school_physics',
'high_school_psychology',
'high_school_statistics',
'high_school_us_history',
'high_school_world_history',
'human_aging',
'human_sexuality',
'international_law',
'jurisprudence',
'logical_fallacies',
'machine_learning',
'management',
'marketing',
'medical_genetics',
'miscellaneous',
'moral_disputes',
'moral_scenarios',
'nutrition',
'philosophy',
'prehistory',
'professional_accounting',
'professional_law',
'professional_medicine',
'professional_psychology',
'public_relations',
'security_studies',
'sociology',
'us_foreign_policy',
'virology',
'world_religions'
]
def test_answer_mmlu_(pred_str, ans):
pattern = 'answer is ('
pred = pred_str.lower().split(pattern)
if len(pred) == 1:
pattern = 'answer is '
pred = pred_str.lower().split(pattern)
if len(pred) == 1:
pattern = '('
pred = pred_str.lower().split(pattern)
if(len(pred) > 1):
# print(pred)
if len(pred[1]) == 0:
pred = pred[1]
else:
pred = pred[1][0]
# print(pred)
gold = ans.lower()
# print('debug 1, pred %s, gold %s' % (pred, gold))
return pred == gold
else:
pred = 'C'
# print(ans_str)
gold = ans.lower()
# print('debug 2, pred %s, gold %s' % (pred, gold))
return pred == gold
BBH_MULTIPLE_CHOICE_TASKS = [
'temporal_sequences', 'disambiguation_qa', 'date_understanding', 'tracking_shuffled_objects_three_objects', 'penguins_in_a_table',
'geometric_shapes', 'snarks', 'ruin_names', 'tracking_shuffled_objects_seven_objects', 'tracking_shuffled_objects_five_objects',
'logical_deduction_three_objects', 'hyperbaton', 'logical_deduction_five_objects', 'logical_deduction_seven_objects', 'movie_recommendation',
'salient_translation_error_detection', 'reasoning_about_colored_objects',
]
BBH_FREE_FORM_TASKS = [
'multistep_arithmetic_two', 'navigate', 'dyck_languages', 'word_sorting', 'sports_understanding',
'boolean_expressions', 'object_counting', 'formal_fallacies', 'causal_judgement', 'web_of_lies',
]
def test_answer_bbh_(ans, mode, a):
ans_line = ans.split('answer is ')
# Expect to see 'answer is'. If not return whole string
if len(ans_line) == 1:
return ans == a
else:
ans = ans_line[-1].strip()
if mode == 'multiple_choice':
options = ['(A)', '(B)', '(C)', '(D)', '(E)', '(F)', '(G)', '(H)', '(I)', '(J)', '(K)', '(L)', '(M)', '(N)', '(O)', '(P)', '(Q)', '(R)', '(S)', '(T)', '(U)', '(V)', '(W)', '(X)', '(Y)', '(Z)']
for option in options:
if option in ans:
ans = option[1]
break
return ans == a
elif mode == 'free_form':
if ans[-1] == '.':
ans = ans[:-1]
return ans == a
# MATH-500
def find_answer_math_(s):
assert('boxed' in s)
ans = s.split('boxed')[-1]
if(ans[0] == '{'):
stack = 1
a = ''
for c in ans[1:]:
if(c == '{'):
stack += 1
a += c
elif(c == '}'):
stack -= 1
if(stack == 0): break
a += c
else:
a += c
else:
a = ans.split('$')[0].strip()
return a
def test_answer_math_(pred_str, ans_str):
if('The answer is: ' in pred_str):
pred = pred_str.split('The answer is: ')[-1].strip()
elif('The answer is ' in pred_str):
pred = pred_str.split('The answer is ')[-1].strip()
else:
pattern = '\d*\.?\d+'
pred = re.findall(pattern, pred_str)
if(len(pred) >= 1):
# print(pred_str)
pred = pred[-1]
else: pred = ''
gold = find_answer_math_(ans_str)
return pred == gold
# MBPP
MBPP_test_templates = """
{gen_code}
{test_codes}
"""
MBPP_prompt_templates = """
id: {task_id}
Question:
{text}
{test_codes}
Codes:
{code}
"""
MBPP_gen_templates = """
id: {task_id}
Question:
{text}
{test_codes}
Codes:
"""
def jsonl_to_dataframe(file_path):
data_list = []
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
data = json.loads(line)
data_list.append(data)
df = pd.DataFrame(data_list)
return df
def generate_test_codes(test_list):
return '\n'.join(test_list)
def test_answer_mbpp_(code_generate, test_list):
code_generate = MBPP_test_templates.format(gen_code=code_generate, test_codes=generate_test_codes(test_list))
try:
if exec(code_generate, globals()) is None:
return True
else:
return [None, False]
except Exception as e:
# print(str(e))
return [str(e), False]
def load_judge_prompts_mtbench(prompt_file: str):
"""Load judge prompts.
The return value is a python dict of type:
Dict[judge_name: str -> dict]
"""
prompts = {}
with open(prompt_file) as fin:
for line in fin:
line = json.loads(line)
prompts[line["name"]] = line
return prompts
def replace_json_line(file_path, line_number, new_json_dict):
with open(file_path, 'r') as file:
lines = file.readlines()
if line_number < 1 or line_number > len(lines):
raise IndexError("行号超出范围")
lines[line_number - 1] = json.dumps(new_json_dict) + '\n'
with open(file_path, 'w') as file:
file.writelines(lines)
llm_models = [
{
'model': "gpt-4-turbo-2024-04-09",
'request_type': "openai",
'parameters': {"top_p": 0.7, "temperature": 0.9}
},
{
'model': "gpt-4-turbo-preview",
'request_type': "openai",
'parameters': {"top_p": 0.7, "temperature": 0.9}
},
]
def extract_rating_mtbench(text):
import re
pattern = r"\[\[(\d+)\]\]"
match = re.findall(pattern, text)[-1]
return int(match)
def test_answer_mtbench_(turns, reference, turns_output, model, types='single'):
llm = LLMs(**model)
judge_prompts = []
with open("./lib_prompts/mtbench_judge_prompts.jsonl", "r") as json_file:
for line in json_file:
# print(line)
judge_prompts.append(json.loads(line))
if len(turns) > 1:
turns_types = '-multi-turn'
else:
turns_types = ''
try:
if math.isnan(reference):
reference_type = ''
else:
reference_type = '-math'
except TypeError:
reference_type = '-math'
prompt_judge_name = f"{types}{reference_type}-v1{turns_types}"
judge_prompt = None
# print(prompt_judge_name)
for i in range(len(judge_prompts)):
if judge_prompts[i]['name'] == prompt_judge_name:
judge_prompt = judge_prompts[i]
break
prompt_q = None
if prompt_judge_name == 'single-v1-multi-turn':
prompt_q = judge_prompt['prompt_template'].format(question_1=turns[0], answer_1=turns_output[0],
question_2=turns[1], answer_2=turns_output[1])
elif prompt_judge_name == 'single-v1':
prompt_q = judge_prompt['prompt_template'].format(question=turns[0], answer=turns_output[0])
elif prompt_judge_name == 'single-math-v1':
prompt_q = judge_prompt['prompt_template'].format(question=turns[0], ref_answer_1=reference, answer=turns_output[0])
elif prompt_judge_name == 'single-math-v1-multi-turn':
prompt_q = judge_prompt['prompt_template'].format(question_1=turns[0], answer_1=turns_output[0],
question_2=turns[1], answer_2=turns_output[1],
ref_answer_1=reference[0], ref_answer_2=reference[1])
sys_prompt = judge_prompt['system_prompt']
# print(sys_prompt)
# print(prompt_q)
llm_judge = llm.request(prompt_q, sys_prompt)
result = extract_rating_mtbench(llm_judge)
return [result, llm_judge]