-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval_plus.py
166 lines (149 loc) · 7.27 KB
/
eval_plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import json
import os
"""
outputs_dict = {
'datasets': 'gsm8k_test',
'id': i,
'question': q,
'gold_answer': a,
'large_model': large_model_name,
'small_model': small_model_name,
'small_ft_model': small_ft_model_name,
'outputs_text': outputs_text,
'correct': test_answer_gsm8k_(outputs_text, a),
'total_tokens_num': outputs['total_tokens_num'],
'latent_tokens_num': outputs['latent_tokens_num'],
'mismatch_tokens_num': outputs['mismatch_tokens_num'],
'method_info': [router, collabrate]
}
"""
def read_json_files_in_outputs(dir_path):
files_path = []
for root, dirs, files in os.walk(dir_path):
for file in files:
if file.endswith('.json'):
file_path = os.path.join(root, file)
files_path.append(file_path)
return files_path
def extract_key_info(key):
parts = key.split('_')
if parts[2] == 'delta':
deleted_element = parts.pop(3)
parts[2] = f'{parts[2]}_{deleted_element}'
if parts[2] == 'normal':
parts.insert(3, 1)
parts.insert(5, 'few-shot(CoT)')
# print(parts)
large_model_size = float(parts[0].split('-')[1][:-1])
small_model_size = float(parts[1].split('-')[1][:-1])
decoding_method = parts[4]
threshold_value = float(parts[3])
return (large_model_size, small_model_size, decoding_method, threshold_value)
if __name__ == "__main__":
dir_path = './outputs_logits_500'
results = {}
for i in ['bbh', 'gsm8k', 'math', 'mmlu', 'mbpp', 'mtbench']:
results.update(
{i: { }}
)
files_path = read_json_files_in_outputs(dir_path)
for file_path in files_path:
# print(file_path)
if file_path.split('/')[-1] == 'overall_eval.json':
continue
outputs_list = []
print(file_path)
with open(file_path, "r") as json_file:
for line in json_file:
# print(line)
try:
outputs_list.append(json.loads(line))
except json.decoder.JSONDecodeError:
print('Decode ERROR')
break
if len(outputs_list) > 100:
break
# print(outputs_list[0]['outputs_text'])
for outputs in outputs_list:
llm_name = outputs['llm_name'].split('/')[-1]
slm_name = outputs['slm_name'].split('/')[-1]
collabrate_method = outputs['method_info'][1]
router_method = outputs['method_info'][0]
router_str = ''
if router_method['method'] == 'delta_threshold':
router_str = f"{router_method['method']}_{str(router_method['threshold'])}"
elif router_method['method'] == 'threshold':
router_str = f"{router_method['method']}_{str(router_method['threshold'])}"
elif router_method['method'] == 'svm':
router_str = f"{router_method['method']}_{router_method['trained_model_path'].split('/')[-1]}"
else:
router_str = f"{router_method['method']}"
if collabrate_method['method'] == 'ContrastiveDecoding':
key = f"{llm_name}_{slm_name}_{router_str}_{collabrate_method['method']}_{str(collabrate_method['alpha'])}_{str(collabrate_method['beta'])}"
elif collabrate_method['method'] == 'ProxyFineTuning':
key = f"{llm_name}_{slm_name}_{router_str}_{collabrate_method['method']}"
elif collabrate_method['method'] == 'SpeculativeDecoding':
key = f"{llm_name}_{slm_name}_{router_str}_{collabrate_method['method']}_{str(collabrate_method['K'])}"
else:
key = f"{llm_name}_{slm_name}_{router_str}_{collabrate_method['method']}"
key = f"{key}_{file_path.split('_')[-1].split('.')[0]}"
try:
if file_path.split('/')[-1].split('_')[0] == 'mtbench':
try:
if outputs['correct'] is None:
results[file_path.split('/')[-1].split('_')[0]][key]['acc'] += 0
else:
results[file_path.split('/')[-1].split('_')[0]][key]['acc'] += int(outputs['correct'][0])
except KeyError:
results[file_path.split('/')[-1].split('_')[0]][key]['acc'] += 0
else:
try:
results[file_path.split('/')[-1].split('_')[0]][key]['acc'] += 1 if outputs['correct'] is True else 0
except KeyError:
results[file_path.split('/')[-1].split('_')[0]][key]['acc'] += 0
results[file_path.split('/')[-1].split('_')[0]][key]['total_ans'] += 1
results[file_path.split('/')[-1].split('_')[0]][key]['total_tokens_num'] += outputs['total_tokens_num']
results[file_path.split('/')[-1].split('_')[0]][key]['latent_tokens_num'] += outputs['latent_tokens_num']
results[file_path.split('/')[-1].split('_')[0]][key]['mismatch_tokens_num'] += outputs['mismatch_tokens_num']
except Exception:
if file_path.split('/')[-1].split('_')[0] == 'mtbench':
try:
if outputs['correct'] is None:
acc = 0
else:
acc = int(outputs['correct'][0])
except KeyError:
acc = 0
else:
try:
acc = 1 if outputs['correct'] is True else 0
except KeyError:
acc = 0
results[file_path.split('/')[-1].split('_')[0]].update(
{
key: {
'acc': acc,
'total_ans': 1,
'total_tokens_num': outputs['total_tokens_num'],
'latent_tokens_num': outputs['latent_tokens_num'],
'mismatch_tokens_num': outputs['mismatch_tokens_num'],
'file_name': file_path.split('/')[-1]
}
}
)
for dataset, model_status in results.items():
for status, result in model_status.items():
if dataset == 'mtbench':
results[dataset][status].update({'accuracy': round(result['acc'] / result['total_ans'], 3)})
else:
results[dataset][status].update({'accuracy': round(result['acc']*100 / result['total_ans'], 3)})
results[dataset][status].update({'latent_ratio': round(result['latent_tokens_num'] / result['total_tokens_num'], 3)})
results[dataset][status].update({'mismatch_ratio': round(result['mismatch_tokens_num'] / result['latent_tokens_num'], 3)})
indented_results = json.dumps(results, indent=4)
results_sorted = {}
for dataset in results:
sorted_keys = sorted(results[dataset].keys(), key=extract_key_info)
results_sorted[dataset] = {key: results[dataset][key] for key in sorted_keys}
with open(f'./outputs_logits_500/overall_eval.json', 'w') as f:
json.dump(results_sorted, f, indent=4)
print(indented_results)