forked from jaeho-lee/layer-adaptive-sparsity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterate.py
67 lines (59 loc) · 2.67 KB
/
iterate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch,argparse,random,os
import numpy as np
from tools import *
""" ARGUMENT PARSING """
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--cuda', type=int, help='cuda number')
parser.add_argument('--model', type=str, help='network')
parser.add_argument('--pruner', type=str, help='pruning method')
parser.add_argument('--iter_start', type=int, default=1, help='start iteration for pruning')
parser.add_argument('--iter_end', type=int, default=20, help='start iteration for pruning')
args = parser.parse_args()
""" SET THE SEED """
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False
DEVICE = args.cuda
""" IMPORT LOADERS/MODELS/PRUNERS/TRAINERS"""
model,amount_per_it,batch_size,opt_pre,opt_post = model_and_opt_loader(args.model,DEVICE)
train_loader, test_loader = dataset_loader(args.model,batch_size=batch_size)
pruner = weight_pruner_loader(args.pruner)
trainer = trainer_loader()
""" SET SAVE PATHS """
DICT_PATH = f'./dicts/{args.model}/{args.seed}'
if not os.path.exists(DICT_PATH):
os.makedirs(DICT_PATH)
BASE_PATH = f'./results/iterate/{args.model}/{args.seed}'
if not os.path.exists(BASE_PATH):
os.makedirs(BASE_PATH)
""" PRETRAIN (IF NEEDED) """
if args.iter_start == 1:
filename_string = 'unpruned.pth'
else:
filename_string = args.pruner+str(args.iter_start-1)+'.pth'
if os.path.exists(os.path.join(DICT_PATH,filename_string)):
print(f"LOADING PRE-TRAINED MODEL: SEED: {args.seed}, MODEL: {args.model}, ITER: {args.iter_start - 1}")
state_dict = torch.load(os.path.join(DICT_PATH,filename_string),map_location=torch.device(DEVICE))
model.load_state_dict(state_dict)
else:
if args.iter_start == 1:
print(f"PRE-TRAINING A MODEL: SEED: {args.seed}, MODEL: {args.model}")
pretrain_results = trainer(model,opt_pre,train_loader,test_loader)
torch.save(pretrain_results, DICT_PATH+'/unpruned_loss.dtx')
torch.save(model.state_dict(),os.path.join(DICT_PATH,'unpruned.pth'))
else:
raise ValueError('No (iteratively pruned/trained) model found!')
""" PRUNE AND RETRAIN """
results_to_save = []
for it in range(args.iter_start,args.iter_end+1):
print(f"Pruning for iteration {it}: METHOD: {args.pruner}")
pruner(model,amount_per_it)
result_log = trainer(model,opt_post,train_loader,test_loader)
result_log.append(get_model_sparsity(model))
results_to_save.append(result_log)
torch.save(torch.FloatTensor(results_to_save),BASE_PATH+f'/{args.pruner}.tsr')