-
-
Notifications
You must be signed in to change notification settings - Fork 663
/
Copy pathAnimeGAN.py
328 lines (243 loc) · 14.4 KB
/
AnimeGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from tools.ops import *
from tools.utils import *
from glob import glob
import time
import numpy as np
from net import generator
from net.discriminator import D_net
from tools.data_loader import ImageGenerator
from tools.vgg19 import Vgg19
class AnimeGAN(object) :
def __init__(self, sess, args):
self.model_name = 'AnimeGAN'
self.sess = sess
self.checkpoint_dir = args.checkpoint_dir
self.log_dir = args.log_dir
self.dataset_name = args.dataset
self.epoch = args.epoch
self.init_epoch = args.init_epoch # args.epoch // 20
self.gan_type = args.gan_type
self.batch_size = args.batch_size
self.save_freq = args.save_freq
self.init_lr = args.init_lr
self.d_lr = args.d_lr
self.g_lr = args.g_lr
""" Weight """
self.g_adv_weight = args.g_adv_weight
self.d_adv_weight = args.d_adv_weight
self.con_weight = args.con_weight
self.sty_weight = args.sty_weight
self.color_weight = args.color_weight
self.training_rate = args.training_rate
self.ld = args.ld
self.img_size = args.img_size
self.img_ch = args.img_ch
""" Discriminator """
self.n_dis = args.n_dis
self.ch = args.ch
self.sn = args.sn
self.sample_dir = os.path.join(args.sample_dir, self.model_dir)
check_folder(self.sample_dir)
self.real = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='real_A')
self.anime = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='anime_A')
self.anime_smooth = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch], name='anime_smooth_A')
self.test_real = tf.placeholder(tf.float32, [1, None, None, self.img_ch], name='test_input')
self.anime_gray = tf.placeholder(tf.float32, [self.batch_size, self.img_size[0], self.img_size[1], self.img_ch],name='anime_B')
self.real_image_generator = ImageGenerator('./dataset/train_photo', self.img_size, self.batch_size)
self.anime_image_generator = ImageGenerator('./dataset/{}'.format(self.dataset_name + '/style'), self.img_size, self.batch_size)
self.anime_smooth_generator = ImageGenerator('./dataset/{}'.format(self.dataset_name + '/smooth'), self.img_size, self.batch_size)
self.dataset_num = max(self.real_image_generator.num_images, self.anime_image_generator.num_images)
self.vgg = Vgg19()
print()
print("##### Information #####")
print("# gan type : ", self.gan_type)
print("# dataset : ", self.dataset_name)
print("# max dataset number : ", self.dataset_num)
print("# batch_size : ", self.batch_size)
print("# epoch : ", self.epoch)
print("# init_epoch : ", self.init_epoch)
print("# training image size [H, W] : ", self.img_size)
print("# g_adv_weight,d_adv_weight,con_weight,sty_weight,color_weight : ", self.g_adv_weight,self.d_adv_weight,self.con_weight,self.sty_weight,self.color_weight)
print("# init_lr,g_lr,d_lr : ", self.init_lr,self.g_lr,self.d_lr)
print(f"# training_rate G -- D: {self.training_rate} : 1" )
print()
##################################################################################
# Generator
##################################################################################
def generator(self,x_init, reuse=False, scope="generator"):
with tf.variable_scope(scope, reuse=reuse) :
G = generator.G_net(x_init)
return G.fake
##################################################################################
# Discriminator
##################################################################################
def discriminator(self, x_init, reuse=False, scope="discriminator"):
D = D_net(x_init, self.ch, self.n_dis, self.sn, reuse=reuse, scope=scope)
return D
##################################################################################
# Model
##################################################################################
def gradient_panalty(self, real, fake, scope="discriminator"):
if self.gan_type.__contains__('dragan') :
eps = tf.random_uniform(shape=tf.shape(real), minval=0., maxval=1.)
_, x_var = tf.nn.moments(real, axes=[0, 1, 2, 3])
x_std = tf.sqrt(x_var) # magnitude of noise decides the size of local region
fake = real + 0.5 * x_std * eps
alpha = tf.random_uniform(shape=[self.batch_size, 1, 1, 1], minval=0., maxval=1.)
interpolated = real + alpha * (fake - real)
logit, _= self.discriminator(interpolated, reuse=True, scope=scope)
grad = tf.gradients(logit, interpolated)[0] # gradient of D(interpolated)
grad_norm = tf.norm(flatten(grad), axis=1) # l2 norm
GP = 0
# WGAN - LP
if self.gan_type.__contains__('lp'):
GP = self.ld * tf.reduce_mean(tf.square(tf.maximum(0.0, grad_norm - 1.)))
elif self.gan_type.__contains__('gp') or self.gan_type == 'dragan' :
GP = self.ld * tf.reduce_mean(tf.square(grad_norm - 1.))
return GP
def build_model(self):
""" Define Generator, Discriminator """
self.generated = self.generator(self.real)
self.test_generated = self.generator(self.test_real, reuse=True)
anime_logit = self.discriminator(self.anime)
anime_gray_logit = self.discriminator(self.anime_gray, reuse=True)
generated_logit = self.discriminator(self.generated, reuse=True)
smooth_logit = self.discriminator(self.anime_smooth, reuse=True)
""" Define Loss """
if self.gan_type.__contains__('gp') or self.gan_type.__contains__('lp') or self.gan_type.__contains__('dragan') :
GP = self.gradient_panalty(real=self.anime, fake=self.generated)
else :
GP = 0.0
# init pharse
init_c_loss = con_loss(self.vgg, self.real, self.generated)
init_loss = self.con_weight * init_c_loss
self.init_loss = init_loss
# gan
c_loss, s_loss = con_sty_loss(self.vgg, self.real, self.anime_gray, self.generated)
t_loss = self.con_weight * c_loss + self.sty_weight * s_loss + color_loss(self.real,self.generated) * self.color_weight
g_loss = self.g_adv_weight * generator_loss(self.gan_type, generated_logit)
d_loss = self.d_adv_weight * discriminator_loss(self.gan_type, anime_logit, anime_gray_logit, generated_logit, smooth_logit) + GP
self.Generator_loss = t_loss + g_loss
self.Discriminator_loss = d_loss
""" Training """
t_vars = tf.trainable_variables()
G_vars = [var for var in t_vars if 'generator' in var.name]
D_vars = [var for var in t_vars if 'discriminator' in var.name]
self.init_optim = tf.train.AdamOptimizer(self.init_lr, beta1=0.5, beta2=0.999).minimize(self.init_loss, var_list=G_vars)
self.G_optim = tf.train.AdamOptimizer(self.g_lr , beta1=0.5, beta2=0.999).minimize(self.Generator_loss, var_list=G_vars)
self.D_optim = tf.train.AdamOptimizer(self.d_lr , beta1=0.5, beta2=0.999).minimize(self.Discriminator_loss, var_list=D_vars)
"""" Summary """
self.G_loss = tf.summary.scalar("Generator_loss", self.Generator_loss)
self.D_loss = tf.summary.scalar("Discriminator_loss", self.Discriminator_loss)
self.G_gan = tf.summary.scalar("G_gan", g_loss)
self.G_vgg = tf.summary.scalar("G_vgg", t_loss)
self.G_init_loss = tf.summary.scalar("G_init", init_loss)
self.V_loss_merge = tf.summary.merge([self.G_init_loss])
self.G_loss_merge = tf.summary.merge([self.G_loss, self.G_gan, self.G_vgg, self.G_init_loss])
self.D_loss_merge = tf.summary.merge([self.D_loss])
def train(self):
# initialize all variables
self.sess.run(tf.global_variables_initializer())
# saver to save model
self.saver = tf.train.Saver(max_to_keep=self.epoch)
# summary writer
self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_dir, self.sess.graph)
""" Input Image"""
real_img_op, anime_img_op, anime_smooth_op = self.real_image_generator.load_images(), self.anime_image_generator.load_images(), self.anime_smooth_generator.load_images()
# restore check-point if it exits
could_load, checkpoint_counter = self.load(self.checkpoint_dir)
if could_load:
start_epoch = checkpoint_counter + 1
print(" [*] Load SUCCESS")
else:
start_epoch = 0
print(" [!] Load failed...")
# loop for epoch
init_mean_loss = []
mean_loss = []
# training times , G : D = self.training_rate : 1
j = self.training_rate
for epoch in range(start_epoch, self.epoch):
for idx in range(int(self.dataset_num / self.batch_size)):
anime, anime_smooth, real = self.sess.run([anime_img_op, anime_smooth_op, real_img_op])
train_feed_dict = {
self.real:real[0],
self.anime:anime[0],
self.anime_gray:anime[1],
self.anime_smooth:anime_smooth[1]
}
if epoch < self.init_epoch :
# Init G
start_time = time.time()
real_images, generator_images, _, v_loss, summary_str = self.sess.run([self.real, self.generated,
self.init_optim,
self.init_loss, self.V_loss_merge], feed_dict = train_feed_dict)
self.writer.add_summary(summary_str, epoch)
init_mean_loss.append(v_loss)
print("Epoch: %3d Step: %5d / %5d time: %f s init_v_loss: %.8f mean_v_loss: %.8f" % (epoch, idx,int(self.dataset_num / self.batch_size), time.time() - start_time, v_loss, np.mean(init_mean_loss)))
if (idx+1)%200 ==0:
init_mean_loss.clear()
else :
start_time = time.time()
if j == self.training_rate:
# Update D
_, d_loss, summary_str = self.sess.run([self.D_optim, self.Discriminator_loss, self.D_loss_merge],
feed_dict=train_feed_dict)
self.writer.add_summary(summary_str, epoch)
# Update G
real_images, generator_images, _, g_loss, summary_str = self.sess.run([self.real, self.generated,self.G_optim,
self.Generator_loss, self.G_loss_merge], feed_dict = train_feed_dict)
self.writer.add_summary(summary_str, epoch)
mean_loss.append([d_loss, g_loss])
if j == self.training_rate:
print(
"Epoch: %3d Step: %5d / %5d time: %f s d_loss: %.8f, g_loss: %.8f -- mean_d_loss: %.8f, mean_g_loss: %.8f" % (
epoch, idx, int(self.dataset_num / self.batch_size), time.time() - start_time, d_loss, g_loss, np.mean(mean_loss, axis=0)[0],
np.mean(mean_loss, axis=0)[1]))
else:
print(
"Epoch: %3d Step: %5d / %5d time: %f s , g_loss: %.8f -- mean_g_loss: %.8f" % (
epoch, idx, int(self.dataset_num / self.batch_size), time.time() - start_time, g_loss, np.mean(mean_loss, axis=0)[1]))
if (idx + 1) % 200 == 0:
mean_loss.clear()
j = j - 1
if j < 1:
j = self.training_rate
if (epoch + 1) >= self.init_epoch and np.mod(epoch + 1, self.save_freq) == 0:
self.save(self.checkpoint_dir, epoch)
if epoch >= self.init_epoch -1:
""" Result Image """
val_files = glob('./dataset/{}/*.*'.format('val'))
save_path = './{}/{:03d}/'.format(self.sample_dir, epoch)
check_folder(save_path)
for i, sample_file in enumerate(val_files):
print('val: '+ str(i) + sample_file)
sample_image = np.asarray(load_test_data(sample_file, self.img_size))
test_real,test_generated = self.sess.run([self.test_real,self.test_generated],feed_dict = {self.test_real:sample_image} )
save_images(test_real, save_path+'{:03d}_a.jpg'.format(i), None)
save_images(test_generated, save_path + '{:03d}_b.jpg'.format(i), None)
# adjust_brightness_from_photo_to_fake
# save_images(test_generated, save_path+'{:03d}_b.jpg'.format(i), sample_file)
@property
def model_dir(self):
return "{}_{}_{}_{}_{}_{}_{}_{}".format(self.model_name, self.dataset_name,
self.gan_type,
int(self.g_adv_weight), int(self.d_adv_weight), int(self.con_weight), int(self.sty_weight), int(self.color_weight))
def save(self, checkpoint_dir, step):
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step)
def load(self, checkpoint_dir):
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(ckpt_name.split('-')[-1])
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0