forked from EliasOenal/multimon-ng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBCHCode.c
416 lines (387 loc) · 13.1 KB
/
BCHCode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
* File: bch3121.c
* Author: Robert Morelos-Zaragoza
*
* %%%%%%%%%%% Encoder/Decoder for a (31,21,5) binary BCH code %%%%%%%%%%%%%
*
* This code is used in the POCSAG protocol specification for pagers.
*
* In this specific case, there is no need to use the Berlekamp-Massey
* algorithm, since the error locator polynomial is of at most degree 2.
* Instead, we simply solve by hand two simultaneous equations to give
* the coefficients of the error locator polynomial in the case of two
* errors. In the case of one error, the location is given by the first
* syndrome.
*
* This program derivates from the original bch2.c, which was written
* to simulate the encoding/decoding of primitive binary BCH codes.
* Part of this program is adapted from a Reed-Solomon encoder/decoder
* program, 'rs.c', to the binary case.
*
* rs.c by Simon Rockliff, University of Adelaide, 21/9/89
* bch2.c by Robert Morelos-Zaragoza, University of Hawaii, 5/19/92
*
* COPYRIGHT NOTICE: This computer program is free for non-commercial purposes.
* You may implement this program for any non-commercial application. You may
* also implement this program for commercial purposes, provided that you
* obtain my written permission. Any modification of this program is covered
* by this copyright.
*
* %%%% Copyright 1994 (c) Robert Morelos-Zaragoza. All rights reserved. %%%%%
*
* m = order of the field GF(2**5) = 5
* n = 2**5 - 1 = 31 = length
* t = 2 = error correcting capability
* d = 2*t + 1 = 5 = designed minimum distance
* k = n - deg(g(x)) = 21 = dimension
* p[] = coefficients of primitive polynomial used to generate GF(2**5)
* g[] = coefficients of generator polynomial, g(x)
* alpha_to [] = log table of GF(2**5)
* index_of[] = antilog table of GF(2**5)
* data[] = coefficients of data polynomial, i(x)
* bb[] = coefficients of redundancy polynomial ( x**(10) i(x) ) modulo g(x)
* numerr = number of errors
* errpos[] = error positions
* recd[] = coefficients of received polynomial
* decerror = number of decoding errors (in MESSAGE positions)
*
*/
/*
* BCHCode.c
*
* Copyright (C) 2015 Craig Shelley ([email protected])
*
* BCH Encoder/Decoder - Adapted from GNURadio for use with Multimon
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <math.h>
#include <stdlib.h>
#include "BCHCode.h"
struct BCHCode {
int * p; // coefficients of primitive polynomial used to generate GF(2**5)
int m; // order of the field GF(2**5) = 5
int n; // 2**5 - 1 = 31
int k; // n - deg(g(x)) = 21 = dimension
int t; // 2 = error correcting capability
int * alpha_to; // log table of GF(2**5)
int * index_of; // antilog table of GF(2**5)
int * g; // coefficients of generator polynomial, g(x) [n - k + 1]=[11]
int * bb; // coefficients of redundancy polynomial ( x**(10) i(x) ) modulo g(x)
};
static void generate_gf(struct BCHCode * BCHCode_data) {
if (BCHCode_data==NULL) return;
/*
* generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
* lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
* polynomial form -> index form index_of[j=alpha**i] = i alpha=2 is the
* primitive element of GF(2**m)
*/
register int i, mask;
mask = 1;
BCHCode_data->alpha_to[BCHCode_data->m] = 0;
for (i = 0; i < BCHCode_data->m; i++) {
BCHCode_data->alpha_to[i] = mask;
BCHCode_data->index_of[BCHCode_data->alpha_to[i]] = i;
if (BCHCode_data->p[i] != 0)
BCHCode_data->alpha_to[BCHCode_data->m] ^= mask;
mask <<= 1;
}
BCHCode_data->index_of[BCHCode_data->alpha_to[BCHCode_data->m]] = BCHCode_data->m;
mask >>= 1;
for (i = BCHCode_data->m + 1; i < BCHCode_data->n; i++) {
if (BCHCode_data->alpha_to[i - 1] >= mask)
BCHCode_data->alpha_to[i] = BCHCode_data->alpha_to[BCHCode_data->m] ^ ((BCHCode_data->alpha_to[i - 1] ^ mask) << 1);
else
BCHCode_data->alpha_to[i] = BCHCode_data->alpha_to[i - 1] << 1;
BCHCode_data->index_of[BCHCode_data->alpha_to[i]] = i;
}
BCHCode_data->index_of[0] = -1;
}
static void gen_poly(struct BCHCode * BCHCode_data) {
if (BCHCode_data==NULL) return;
/*
* Compute generator polynomial of BCH code of length = 31, redundancy = 10
* (OK, this is not very efficient, but we only do it once, right? :)
*/
register int ii, jj, ll, kaux;
int test, aux, nocycles, root, noterms, rdncy;
int cycle[15][6], size[15], min[11], zeros[11];
/* Generate cycle sets modulo 31 */
cycle[0][0] = 0; size[0] = 1;
cycle[1][0] = 1; size[1] = 1;
jj = 1; /* cycle set index */
do {
/* Generate the jj-th cycle set */
ii = 0;
do {
ii++;
cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % BCHCode_data->n;
size[jj]++;
aux = (cycle[jj][ii] * 2) % BCHCode_data->n;
} while (aux != cycle[jj][0]);
/* Next cycle set representative */
ll = 0;
do {
ll++;
test = 0;
for (ii = 1; ((ii <= jj) && (!test)); ii++) {
/* Examine previous cycle sets */
for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++) {
if (ll == cycle[ii][kaux]) {
test = 1;
}
}
}
} while ((test) && (ll < (BCHCode_data->n - 1)));
if (!(test)) {
jj++; /* next cycle set index */
cycle[jj][0] = ll;
size[jj] = 1;
}
} while (ll < (BCHCode_data->n - 1));
nocycles = jj; /* number of cycle sets modulo BCHCode_data->n */
/* Search for roots 1, 2, ..., BCHCode_data->d-1 in cycle sets */
kaux = 0;
rdncy = 0;
for (ii = 1; ii <= nocycles; ii++) {
min[kaux] = 0;
for (jj = 0; jj < size[ii]; jj++) {
for (root = 1; root < (2*BCHCode_data->t + 1); root++) {
if (root == cycle[ii][jj]) {
min[kaux] = ii;
}
}
}
if (min[kaux]) {
rdncy += size[min[kaux]];
kaux++;
}
}
noterms = kaux;
kaux = 1;
for (ii = 0; ii < noterms; ii++) {
for (jj = 0; jj < size[min[ii]]; jj++) {
zeros[kaux] = cycle[min[ii]][jj];
kaux++;
}
}
//printf("This is a (%d, %d, %d) binary BCH code\n", BCHCode_data->n, BCHCode_data->k, BCHCode_data->d);
/* Compute generator polynomial */
BCHCode_data->g[0] = BCHCode_data->alpha_to[zeros[1]];
BCHCode_data->g[1] = 1; /* g(x) = (X + zeros[1]) initially */
for (ii = 2; ii <= rdncy; ii++) {
BCHCode_data->g[ii] = 1;
for (jj = ii - 1; jj > 0; jj--) {
if (BCHCode_data->g[jj] != 0)
BCHCode_data->g[jj] = BCHCode_data->g[jj - 1] ^ BCHCode_data->alpha_to[(BCHCode_data->index_of[BCHCode_data->g[jj]] + zeros[ii]) % BCHCode_data->n];
else
BCHCode_data->g[jj] = BCHCode_data->g[jj - 1];
}
BCHCode_data->g[0] = BCHCode_data->alpha_to[(BCHCode_data->index_of[BCHCode_data->g[0]] + zeros[ii]) % BCHCode_data->n];
}
//printf("g(x) = ");
//for (ii = 0; ii <= rdncy; ii++) {
// printf("%d", BCHCode_data->g[ii]);
// if (ii && ((ii % 70) == 0)) {
// printf("\n");
// }
//}
//printf("\n");
}
void BCHCode_Encode(struct BCHCode * BCHCode_data, int data[]) {
if (BCHCode_data==NULL) return;
/*
* Calculate redundant bits bb[], codeword is c(X) = data(X)*X**(n-k)+ bb(X)
*/
register int i, j;
register int feedback;
for (i = 0; i < BCHCode_data->n - BCHCode_data->k; i++) {
BCHCode_data->bb[i] = 0;
}
for (i = BCHCode_data->k - 1; i >= 0; i--) {
feedback = data[i] ^ BCHCode_data->bb[BCHCode_data->n - BCHCode_data->k - 1];
if (feedback != 0) {
for (j = BCHCode_data->n - BCHCode_data->k - 1; j > 0; j--) {
if (BCHCode_data->g[j] != 0) {
BCHCode_data->bb[j] = BCHCode_data->bb[j - 1] ^ feedback;
} else {
BCHCode_data->bb[j] = BCHCode_data->bb[j - 1];
}
}
BCHCode_data->bb[0] = BCHCode_data->g[0] && feedback;
} else {
for (j = BCHCode_data->n - BCHCode_data->k - 1; j > 0; j--) {
BCHCode_data->bb[j] = BCHCode_data->bb[j - 1];
}
BCHCode_data->bb[0] = 0;
};
};
};
int BCHCode_Decode(struct BCHCode * BCHCode_data, int recd[]) {
if (BCHCode_data==NULL) return -1;
/*
* We do not need the Berlekamp algorithm to decode.
* We solve before hand two equations in two variables.
*/
register int i, j, q;
int elp[3], s[5], s3;
int count = 0, syn_error = 0;
int loc[3], reg[3];
int aux;
int retval=0;
/* first form the syndromes */
// printf("s[] = (");
for (i = 1; i <= 4; i++) {
s[i] = 0;
for (j = 0; j < BCHCode_data->n; j++) {
if (recd[j] != 0) {
s[i] ^= BCHCode_data->alpha_to[(i * j) % BCHCode_data->n];
}
}
if (s[i] != 0) {
syn_error = 1; /* set flag if non-zero syndrome */
}
/* NOTE: If only error detection is needed,
* then exit the program here...
*/
/* convert syndrome from polynomial form to index form */
s[i] = BCHCode_data->index_of[s[i]];
//printf("%3d ", s[i]);
};
//printf(")\n");
if (syn_error) { /* If there are errors, try to correct them */
if (s[1] != -1) {
s3 = (s[1] * 3) % BCHCode_data->n;
if ( s[3] == s3 ) { /* Was it a single error ? */
//printf("One error at %d\n", s[1]);
recd[s[1]] ^= 1; /* Yes: Correct it */
} else {
/* Assume two errors occurred and solve
* for the coefficients of sigma(x), the
* error locator polynomail
*/
if (s[3] != -1) {
aux = BCHCode_data->alpha_to[s3] ^ BCHCode_data->alpha_to[s[3]];
} else {
aux = BCHCode_data->alpha_to[s3];
}
elp[0] = 0;
elp[1] = (s[2] - BCHCode_data->index_of[aux] + BCHCode_data->n) % BCHCode_data->n;
elp[2] = (s[1] - BCHCode_data->index_of[aux] + BCHCode_data->n) % BCHCode_data->n;
//printf("sigma(x) = ");
//for (i = 0; i <= 2; i++) {
// printf("%3d ", elp[i]);
//}
//printf("\n");
//printf("Roots: ");
/* find roots of the error location polynomial */
for (i = 1; i <= 2; i++) {
reg[i] = elp[i];
}
count = 0;
for (i = 1; i <= BCHCode_data->n; i++) { /* Chien search */
q = 1;
for (j = 1; j <= 2; j++) {
if (reg[j] != -1) {
reg[j] = (reg[j] + j) % BCHCode_data->n;
q ^= BCHCode_data->alpha_to[reg[j]];
}
}
if (!q) { /* store error location number indices */
loc[count] = i % BCHCode_data->n;
count++;
//printf("%3d ", (i%n));
}
}
//printf("\n");
if (count == 2) {
/* no. roots = degree of elp hence 2 errors */
for (i = 0; i < 2; i++)
recd[loc[i]] ^= 1;
} else { /* Cannot solve: Error detection */
retval=1;
//for (i = 0; i < 31; i++) {
// recd[i] = 0;
//}
//printf("incomplete decoding\n");
}
}
} else if (s[2] != -1) {/* Error detection */
retval=1;
//for (i = 0; i < 31; i++) recd[i] = 0;
//printf("incomplete decoding\n");
}
}
return retval;
}
/*
* Example usage BCH(31,21,5)
*
* p[] = coefficients of primitive polynomial used to generate GF(2**5)
* m = order of the field GF(2**5) = 5
* n = 2**5 - 1 = 31
* t = 2 = error correcting capability
* d = 2*BCHCode_data->t + 1 = 5 = designed minimum distance
* k = n - deg(g(x)) = 21 = dimension
* g[] = coefficients of generator polynomial, g(x) [n - k + 1]=[11]
* alpha_to [] = log table of GF(2**5)
* index_of[] = antilog table of GF(2**5)
* data[] = coefficients of data polynomial, i(x)
* bb[] = coefficients of redundancy polynomial ( x**(10) i(x) ) modulo g(x)
*/
struct BCHCode * BCHCode_New(int p[], int m, int n, int k, int t) {
struct BCHCode * BCHCode_data=NULL;
BCHCode_data=(struct BCHCode *) malloc(sizeof (struct BCHCode));
if (BCHCode_data!=NULL) {
BCHCode_data->alpha_to=(int *) malloc(sizeof(int) * (n+1));
BCHCode_data->index_of=(int *) malloc(sizeof(int) * (n+1));
BCHCode_data->p=(int *) malloc(sizeof(int) * (m+1));
BCHCode_data->g=(int *) malloc(sizeof(int) * (n-k+1));
BCHCode_data->bb=(int *) malloc(sizeof(int) * (n-k+1));
if (
BCHCode_data->alpha_to == NULL ||
BCHCode_data->index_of == NULL ||
BCHCode_data->p == NULL ||
BCHCode_data->g == NULL ||
BCHCode_data->bb == NULL
) {
BCHCode_Delete(BCHCode_data);
BCHCode_data=NULL;
}
}
if (BCHCode_data!=NULL) {
int i;
for (i=0; i<(m+1); i++) {
BCHCode_data->p[i]=p[i];
}
BCHCode_data->m=m;
BCHCode_data->n=n;
BCHCode_data->k=k;
BCHCode_data->t=t;
generate_gf(BCHCode_data); /* generate the Galois Field GF(2**m) */
gen_poly(BCHCode_data); /* Compute the generator polynomial of BCH code */
}
return BCHCode_data;
}
void BCHCode_Delete(struct BCHCode * BCHCode_data) {
if (BCHCode_data==NULL) return;
if (BCHCode_data->alpha_to != NULL) free(BCHCode_data->alpha_to);
if (BCHCode_data->index_of != NULL) free(BCHCode_data->index_of);
if (BCHCode_data->p != NULL) free(BCHCode_data->p);
if (BCHCode_data->g != NULL) free(BCHCode_data->g);
if (BCHCode_data->bb != NULL) free(BCHCode_data->bb);
free(BCHCode_data);
}