-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmemory.py
executable file
·316 lines (285 loc) · 9.29 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from keras import backend as K
from theano import tensor as T
import numpy as np
import math
import theano
def initial(number_of_memory_locations, memory_vector_size):
return K.zeros((number_of_memory_locations, memory_vector_size))
def batch_addressing(
head_num,
memory_size,
memory_t,
weight_t_1,
key_vector_t,
key_strength_t,
interpolation_gate_t,
shift_weight_t,
scalar_t):
"""
Addressing mechanisms.
:param head_num: the number of heads.
:param memory_size:
:param memory_t: memory matrix at time t.
:param weight_t_1: memory weight at time t-1.
:param key_vector_t: key vector at time t.
:param key_strength_t: strength of key vector at time t.
:param interpolation_gate_t: interpolation gate at time t.
:param shift_weight_t: shift weight at time t.
:param scalar_t: scalar at time t.
:return: a weight vector at time t.
"""
w_w_t = K.zeros_like(weight_t_1)
for i in xrange(head_num):
# get the addressing for writing
begin = i * memory_size
end = begin + memory_size
w_w_t_i = addressing(
memory_t,
weight_t_1[begin:end],
key_vector_t[begin:end],
key_strength_t[begin:end],
interpolation_gate_t[begin:end],
shift_weight_t[begin:end],
scalar_t[begin:end])
w_w_t[begin:end] = w_w_t_i
return w_w_t
#
# def addressing(
# memory_t,
# weight_t_1,
# key_vector_t, key_strength_t,
# interpolation_gate_t,
# shift_weight_t,
# scalar_t):
# """
# Addressing mechanisms.
# :param memory_t: memory matrix at time t.
# :param weight_t_1: memory weight at time t-1.
# :param key_vector_t: key vector at time t.
# :param key_strength_t: strength of key vector at time t.
# :param interpolation_gate_t: interpolation gate at time t.
# :param shift_weight_t: shift weight at time t.
# :param scalar_t: scalar at time t.
# :return: a weight vector at time t.
# """
# # Content addressing
# weight_content_t = content_addressing(
# memory_t, key_vector_t, key_strength_t)
# print("weight_content_t")
# print(weight_content_t)
#
# # Interpolation
# weight_gated_t = interpolation(
# weight_t_1, weight_content_t, interpolation_gate_t)
# print("weight_content_t")
# print(weight_gated_t)
#
#
# # Convolutional Shift
# _weight_t = circular_convolutional_shift(weight_gated_t, shift_weight_t)
#
# # Sharpening
# weight_t = sharpen(_weight_t, scalar_t)
#
# return weight_t
def addressing(
memory_t,
memory_dim,
memory_size,
weight_t_1,
key_vector_t, key_strength_t,
interpolation_gate_t,
shift_weight_t,
shift_range,
scalar_t):
"""
Addressing mechanisms.
:param memory_t: memory matrix at time t.
:param weight_t_1: memory weight at time t-1.
:param key_vector_t: key vector at time t.
:param key_strength_t: strength of key vector at time t.
:param interpolation_gate_t: interpolation gate at time t.
:param shift_weight_t: shift weight at time t.
:param scalar_t: scalar at time t.
:return: a weight vector at time t.
"""
print("\tbegin addressing()")
# Content addressing
weight_content_t = content_addressing(
memory_t, key_vector_t, key_strength_t)
# print("weight_content_t")
# print(weight_content_t)
# Interpolation
weight_gated_t = interpolation(
weight_t_1, weight_content_t, interpolation_gate_t)
# print("weight_gated_t")
# print(weight_gated_t)
# Convolutional Shift
_weight_t = circular_convolutional_shift(
weight_gated_t, shift_weight_t, memory_size, shift_range)
# print("_weight_t")
# print(_weight_t)
# Sharpening
weight_t = sharpen(_weight_t, scalar_t)
# print("weight_t")
# print(weight_t)
print("\tend addressing()")
return weight_t
def cosine_similarity_group(u, V):
similairty = K.dot(u, V) / (K.sum(K.abs(u)) * K.sum(K.abs(V), axis=0))
# import numpy as np
# u = np.random.random((3))
# V = np.random.random((3, 4))
# sim = np.dot(u, V) / (sum(abs(u)) * np.sum(abs(V), axis=0))
# print("u")
# print(u)
# print("V")
# print(V)
# print("similairty")
# print(similairty)
return similairty
def cosine_similarity(u, v):
similairty = K.dot(u, v) / (K.sum(K.abs(u)) * K.sum(K.abs(v), axis=0))
# similairty = K.dot(u, v) / (K.sum(K.abs(u), axis=1) * K.sum(K.abs(v), axis=1))
# print("u")
# print(u)
# print("v")
# print(v)
# print("similairty")
# print(similairty)
return similairty
def softmax(x):
# print("x")
# print(x)
_softmax = K.softmax(x)
# print("softmax(x)")
# print(_softmax)
return _softmax
def content_addressing(memory_t, key_vector_t, key_strength_t):
'''
Focusing by content.
:param memory_t: external memory.
:param key_vector_t: key vector.
:param key_strength_t: the strength of key.
:return:
'''
# print("content addressing:")
# print(">>memory_t")
# print(key_vector_t)
# print(">>key_vector_t")
# print(key_vector_t)
# print(">>key_strength_t")
# print(key_strength_t)
_weight_content_t = \
key_strength_t * cosine_similarity_group(key_vector_t, memory_t)
weight_content_t = softmax(_weight_content_t)
# print("_weight_content_t")
# print(_weight_content_t)
return weight_content_t
def interpolation(weight_t_1, weight_content_t, interpolation_gate_t):
'''
Focusing by location.
:param weight_t_1: the weight value at time-step t-1
:param weight_content_t: the weight get by content-based addressing.
:param interpolation_gate_t: the interpolation gate.
:return:
'''
weight_gated_t = interpolation_gate_t * weight_content_t + \
(1.0 - interpolation_gate_t) * weight_t_1
return weight_gated_t
def circular_convolutional_shift(v, k, n, m):
"""Computes circular convolution.
Args:
v: a 1-D `Tensor` (vector)
k: a 1-D `Tensor` (kernel)
"""
# size = int(v.get_shape()[0])
# kernel_size = int(k.get_shape()[0])
# kernel_shift = int(math.floor(kernel_size/2.0))
size = n
kernel_size = m
kernel_shift = (kernel_size + 1)/2.0
shift_range = T.argmax(k) - kernel_shift
def loop(idx):
if T.lt(idx, 0):
return size + idx
if T.ge(idx, size):
return idx - size
else:
return idx
kernels = []
for i in T.xrange(size):
indices = loop(i + shift_range)
index = theano.tensor.cast(indices, 'int64')
v_ = v[index]
kernels.append(v_)
return kernels
# def circular_convolutional_shift(v, k, n, m):
# """Computes circular convolution.
# Args:
# v: a 1-D `Tensor` (vector)
# k: a 1-D `Tensor` (kernel)
# """
# # size = int(v.get_shape()[0])
# # kernel_size = int(k.get_shape()[0])
# # kernel_shift = int(math.floor(kernel_size/2.0))
# size = n
# kernel_size = m
# kernel_shift = (kernel_size + 1)/2.0
#
# # def loop(idx):
# # if idx < 0:
# # return size + idx
# # if idx >= size:
# # return idx - size
# # else:
# # return idx
#
# def loop(idx):
# if idx < 0:
# return size + idx
# if T.ge(idx, size):
# return idx - size
# else:
# return idx
#
# kernels = []
# # range_list = T.xrange(kernel_shift, -kernel_shift-1, -1)
# # range_list = theano.tensor.arange(kernel_shift, -kernel_shift-1, -1)
# #
# # range_list_, updates_ = theano.scan(lambda i, d: T.sub(m, i), sequences=k)
# # range_list = theano.function(inputs=[m, k], outputs=range_list_)
# #
#
# my_range_max = T.iscalar('my_range_max')
# my_range = T.arange(my_range_max)
# get_range_list = theano.function(inputs=[my_range_max], outputs=my_range)
# range_list = get_range_list(kernel_size)
#
# # range_list = T.arange(m)
#
# for i in T.xrange(size):
# results, updates = theano.scan(lambda r: loop(T.add(r, i)), sequences=range_list)
# indices = theano.function(inputs=[i, range_list], outputs=results)
#
# v_ = T.gather(v, indices)
# kernels.append(T.reduce_sum(v_ * k, 0))
#
# return T.dynamic_stitch([i for i in T.xrange(size)], kernels)
def sharpen(_weight_t, scalar_gama_t):
'''
The convolution operation in convolutional shift can cause leakage or
dispersion of weights over time if the shift weighting is no sharp.
For example, if shift of -1, 0 and 1 are given weights of 0.1, 0.8,
and 0.1, the rotation will transform a weighting focused at single
point into one slightly blurred over three points. To combat this,
each head emits one further scalar \gama >= 1 whose effect is sharpen
the final weighting as follows:
$$w_{i}^{(t)} = \frac{(\hat{w}_{i}^{(t)})^{\gama}}
{\sum_{j}\hat{w}_{j}^{(t)})^{\gama}}$$
:param _weight_t: the weight vector which denotes a memory address.
:param scalar_gama_t: the scalar for sharpen.
:return: the sharpened weight.
'''
weight_t = K.pow(_weight_t, scalar_gama_t)
return weight_t / K.sum(weight_t)