This repository has been archived by the owner on Dec 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsensorpush_to_statusdb.py
574 lines (492 loc) · 20.6 KB
/
sensorpush_to_statusdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
"""Fetch sample readings from sensorpush API, summarize out-of-limit periods
and upload those to StatusDB.
Seems to be one reading per minute given by the API, so nr of samples can be
seen as the number of minute fetched, for example 1440 samples for 24h.
"""
import requests
import argparse
import yaml
import os
import pytz
import datetime
import numpy as np
import pandas as pd
import logging
import time
from couchdb import Server
class SensorPushConnection(object):
def __init__(self, email, password, verbose):
self.email = email
self.password = password
self._authorized = False
self.base_url = "https://api.sensorpush.com/api/v1"
self.access_token = None
self.verbose = verbose
def _authorize(self):
url_ending = "oauth/authorize"
url = "/".join([self.base_url, url_ending])
body_data = {"email": self.email, "password": self.password}
resp = requests.post(url, json=body_data)
assert resp.status_code == 200
authorization_value = resp.json().get("authorization")
body_data = {"authorization": "{}".format(authorization_value)}
url_ending = "oauth/accesstoken"
url = "/".join(x.strip("/") for x in [self.base_url, url_ending] if x)
resp = requests.post(url, json=body_data)
assert resp.status_code == 200
self.access_token = resp.json().get("accesstoken")
self._authorized = True
def _make_request(self, url_ending, body_data):
if not self._authorized:
self._authorize()
url = "/".join(x.strip("/") for x in [self.base_url, url_ending] if x)
auth_headers = {"Authorization": self.access_token}
attempt = 1
max_attempts = 3
while attempt <= max_attempts:
try:
resp = requests.post(url, json=body_data, headers=auth_headers)
if self.verbose:
logging.info(f"Request sent: {vars(resp.request)}")
logging.info(f"Status code: {resp.status_code}")
assert resp.status_code == 200
attempt = 3
except AssertionError:
logger.warning(
f"Error fetching sensorpush data: {resp.text}, attempt {attempt} of {max_attempts}"
)
if attempt > max_attempts:
# Log to error here so that crontab can email the error
logger.error(
f"Error fetching sensorpush data: {resp.text}, attempt {attempt} of {max_attempts}"
)
resp.raise_for_status()
attempt += 1
return resp
def get_samples(self, nr_samples, sensors=None, startTime=None, stopTime=None):
url = "/samples"
body_data = {
"measures": ["temperature"],
}
if nr_samples:
body_data["limit"] = nr_samples
if startTime:
body_data["startTime"] = startTime
if stopTime:
body_data["stopTime"] = stopTime
if sensors:
body_data["sensors"] = sensors
r = self._make_request(url, body_data)
return r.json()
def get_sensors(self):
url = "/devices/sensors"
body_data = {}
r = self._make_request(url, body_data)
return r.json()
class SensorDocument(object):
def __init__(
self,
sensor_id,
original_samples,
sensor_name,
start_time,
limit_lower,
limit_upper,
):
self.original_samples = original_samples
self.sensor_name = sensor_name
self.sensor_id = sensor_id
self.start_time = start_time.strftime("%Y-%m-%dT%H:%M:%S")
self.start_date_midnight = start_time.replace(
hour=0, minute=0, second=0
).strftime("%Y-%m-%dT%H:%M:%S")
self.limit_lower = limit_lower
self.limit_upper = limit_upper
self.intervals_lower = []
self.intervals_lower_extended = []
self.intervals_higher = []
self.intervals_higher_extended = []
# Save all samples around areas outside of limits, otherwise save only hourly averages
self.saved_samples = {}
def format_for_statusdb(self):
return_d = vars(self)
del return_d["original_samples"]
for interval_type in [
"intervals_lower",
"intervals_lower_extended",
"intervals_higher",
"intervals_higher_extended",
]:
return_d[interval_type] = self._interval_list_to_str(
return_d[interval_type]
)
# For convenience with the javascript plotting library, save it as a list of lists
return_d["saved_samples"] = [
[k, v] for k, v in sorted(return_d["saved_samples"].items())
]
return return_d
def _interval_list_to_str(self, input_list):
return [
(sp.strftime("%Y-%m-%dT%H:%M:%S"), ep.strftime("%Y-%m-%dT%H:%M:%S"))
for sp, ep in input_list
]
def _samples_from_intervals(self, intervals):
for interval_lower, interval_upper in intervals:
conv_lower = interval_lower.to_pydatetime()
conv_upper = interval_upper.to_pydatetime()
samples_dict = self.original_samples[conv_lower:conv_upper].to_dict()
self.saved_samples.update(
{
(k.strftime("%Y-%m-%dT%H:%M:%S"), round(v, 3))
for k, v in samples_dict.items()
}
)
def add_samples_from_intervals_lower(self):
self._samples_from_intervals(self.intervals_lower_extended)
def add_samples_from_intervals_higher(self):
self._samples_from_intervals(self.intervals_higher_extended)
def summarize_intervals(self, sample_series, limit_type):
"""Identify start- and endpoints of each out-of-limit intervals."""
# Find all time points that are more than 2 minutes apart
# closer than that and they will be considered the same interval
gaps = np.abs(np.diff(sample_series.index)) > np.timedelta64(2, "m")
# Translate into positions
gap_positions = np.where(gaps)[0] + 1
interval_points = []
extended_intervals = []
for interval in np.split(sample_series, gap_positions):
lower = interval.index[0]
upper = interval.index[-1]
interval_points.append((lower, upper))
# Extended interval with 1 hour in each direction
extend_lower = lower - np.timedelta64(1, "h")
extend_upper = upper + np.timedelta64(1, "h")
extended_intervals.append((extend_lower, extend_upper))
return interval_points, extended_intervals
def time_in_any_extended_interval(self, time_point):
for interval_lower, interval_upper in self.intervals_lower_extended:
if interval_lower < time_point < interval_upper:
return True
for interval_lower, interval_upper in self.intervals_higher_extended:
if interval_lower < time_point < interval_upper:
return True
return False
@staticmethod
def merge_with(new_doc_dict, old_doc_dict):
"""Merge two documents, where the first one is the freshly collected from the api
and the second one is the one fetched from the database
should be two documents from the same date and can potentially be the same hour.
Sensor name, limit_lower and limit_upper are not updated
"""
# Put an id and revision on the new document so that it will update the old one
new_doc_dict["_id"] = old_doc_dict["_id"]
new_doc_dict["_rev"] = old_doc_dict["_rev"]
# Transform saved samples to dict
new_saved_samples = dict(
(row[0], row[1]) for row in new_doc_dict["saved_samples"]
)
old_saved_samples = dict(
(row[0], row[1]) for row in old_doc_dict["saved_samples"]
)
# Check for overlapping keys in saved_samples
for timestamp, old_temp in old_saved_samples.items():
if timestamp in new_saved_samples:
if new_saved_samples[timestamp] != old_temp:
logging.info(
f"Key: {timestamp} found in both documents, keeping the most recently fetched value {new_saved_samples[timestamp]} and not {old_temp}. This occurs a lot since there is commonly less than 60 samples in an hour."
)
else:
new_saved_samples[timestamp] = old_temp
# As above, for convenience with the javascript plotting library, save it as a list of lists
new_doc_dict["saved_samples"] = [
[k, v] for k, v in sorted(new_saved_samples.items())
]
# Helper method for below
def _merge_intervals(intervals_1, intervals_2):
"""Merge two lists of intervals, each interval is a list of two date strings"""
# Sort intervals by start time
all_intervals = sorted(intervals_1 + intervals_2, key=lambda x: x[0])
# Merge overlapping intervals in all_intervals
merged_intervals = []
for interval in all_intervals:
if merged_intervals:
last_interval = merged_intervals[-1]
if last_interval[1] >= interval[0]:
# Merge intervals
merged_intervals[-1] = (
last_interval[0],
max(last_interval[1], interval[1]),
)
else:
# Add interval
merged_intervals.append(interval)
else:
merged_intervals.append(interval)
return merged_intervals
# Use the earliest start time: (string comparison but that's fine with this format)
if old_doc_dict["start_time"] < new_doc_dict["start_time"]:
new_doc_dict["start_time"] = old_doc_dict["start_time"]
new_doc_dict["intervals_lower_extended"] = _merge_intervals(
new_doc_dict["intervals_lower_extended"],
old_doc_dict["intervals_lower_extended"],
)
new_doc_dict["intervals_higher_extended"] = _merge_intervals(
new_doc_dict["intervals_higher_extended"],
old_doc_dict["intervals_higher_extended"],
)
new_doc_dict["intervals_lower"] = _merge_intervals(
new_doc_dict["intervals_lower"], old_doc_dict["intervals_lower"]
)
new_doc_dict["intervals_higher"] = _merge_intervals(
new_doc_dict["intervals_higher"], old_doc_dict["intervals_higher"]
)
return new_doc_dict
def sensor_limits(sensor_info):
limit_upper = None
limit_lower = None
temp_alerts = sensor_info["alerts"].get("temperature", {})
if temp_alerts.get("enabled"):
if "max" in temp_alerts:
limit_upper = to_celsius(temp_alerts["max"])
if "min" in temp_alerts:
limit_lower = to_celsius(temp_alerts["min"])
return limit_lower, limit_upper
def to_celsius(temp):
return ((temp - 32) * 5) / 9
def samples_to_df(samples_dict):
data_d = {}
for sensor_id, samples_json in samples_dict.items():
if sensor_id not in samples_json["sensors"]:
logging.warning(f"Sensor {sensor_id} did not return any data.")
continue
samples = samples_json["sensors"][
sensor_id
] # Slightly weird but due to 1 request per sensor
sensor_d = {}
logging.info(f"Found {len(samples)} samples for sensor {sensor_id}")
for sample in samples:
time_point = datetime.datetime.strptime(
sample["observed"], "%Y-%m-%dT%H:%M:%S.%fZ"
)
# Make datetime aware of timezone
time_point = time_point.replace(tzinfo=datetime.timezone.utc)
sensor_d[time_point] = to_celsius(sample["temperature"])
data_d[sensor_id] = sensor_d
logging.info(f"Data_d has {len(data_d.keys())} nr of keys")
df = pd.DataFrame.from_dict(data_d)
df = df.sort_index(ascending=True)
# convert pandas index to datetime index
return df
def process_data(sensors_json, samples_dict, start_time, nr_samples_requested):
df = samples_to_df(samples_dict)
sensor_documents = []
for sensor_id, sensor_info in sensors_json.items():
# Check if any samples available for the sensor
if sensor_id not in df.columns:
continue
sensor_limit_lower, sensor_limit_upper = sensor_limits(sensor_info)
if (sensor_limit_lower is None) and (sensor_limit_upper is None):
logger.warning(
f'Temperature alert not set for sensor {sensor_info["name"]}'
)
sensor_samples = df[sensor_id].dropna()
# TODO, samples are in Fahrenheit and UTC
sd = SensorDocument(
sensor_id,
sensor_samples,
sensor_info["name"],
start_time,
sensor_limit_lower,
sensor_limit_upper,
)
# Check if there are samples outside of limits
if sensor_limit_lower is not None:
samples_too_low = sensor_samples[sensor_samples < sensor_limit_lower]
# Collect the exact intervals outside of limits
if not samples_too_low.empty:
(
sd.intervals_lower,
sd.intervals_lower_extended,
) = sd.summarize_intervals(samples_too_low, "low")
sd.add_samples_from_intervals_lower()
if sensor_limit_upper is not None:
samples_too_high = sensor_samples[sensor_samples > sensor_limit_upper]
# Collect the exact intervals outside of limits
if not samples_too_high.empty:
(
sd.intervals_higher,
sd.intervals_higher_extended,
) = sd.summarize_intervals(samples_too_high, "high")
sd.add_samples_from_intervals_higher()
# The dropna is needed since sometimes we get sparse samples
# and might have hours without samples.
hourly_mean = sensor_samples.resample("1H").mean().dropna()
for hour, mean_val in hourly_mean.iteritems():
# Don't add any hourly mean values where we've saved more detailed info
if not sd.time_in_any_extended_interval(hour):
sd.saved_samples[hour.strftime("%Y-%m-%dT%H:%M:%S")] = round(
mean_val, 3
)
sensor_documents.append(sd)
return sensor_documents
def main(
nr_samples_requested,
arg_start_date,
statusdb_config,
sensorpush_config,
push,
verbose,
no_wait,
):
try:
if arg_start_date is None:
# Start time is the start of the previous hour
start_date_datetime = datetime.datetime.utcnow() - datetime.timedelta(
hours=1
)
start_date_datetime = start_date_datetime.replace(
minute=0, second=0, microsecond=0
)
else:
start_date_datetime = datetime.datetime.strptime(
arg_start_date, "%Y-%m-%d:%H:%M"
).replace(tzinfo=datetime.timezone.utc)
# Get the midnight time, to use as enddate in order to not get samples from the next day
day_after = start_date_datetime + datetime.timedelta(days=1)
end_time_datetime = day_after.replace(hour=0, minute=0, second=0, microsecond=0)
# Need to use UTC timezone for the API call
start_time = start_date_datetime.strftime("%Y-%m-%dT%H:%M:%S.000Z")
end_time = end_time_datetime.strftime("%Y-%m-%dT%H:%M:%S.000Z")
with open(os.path.expanduser(sensorpush_config), "r") as sp_config_file:
sp_config = yaml.safe_load(sp_config_file)
if ("email" not in sp_config) or ("password" not in sp_config):
raise Exception("Credentials missing in SensorPush config")
sp = SensorPushConnection(
sp_config["email"], sp_config["password"], verbose=verbose
)
logging.info(
f"Fetching {nr_samples_requested} samples from {start_time} to {end_time} (absolute max)"
)
# Request sensor data
sensors = sp.get_sensors()
samples = {}
for sensor in sensors.keys():
if not no_wait:
time.sleep(61) # Sensorpush api recommends 1 request per minute
# Request only samples for one sensor at a time to limit the size of the payload,
# by recommendation from sensorpush support
samples[sensor] = sp.get_samples(
nr_samples_requested, [sensor], startTime=start_time, stopTime=end_time
)
# Summarize data and put into documents suitable for upload
sensor_documents = process_data(
sensors, samples, start_date_datetime, nr_samples_requested
)
# Upload to StatusDB
with open(statusdb_config) as settings_file:
server_settings = yaml.load(settings_file, Loader=yaml.SafeLoader)
url_string = "https://{}:{}@{}".format(
server_settings["statusdb"].get("username"),
server_settings["statusdb"].get("password"),
server_settings["statusdb"].get("url"),
)
couch = Server(url_string)
sensorpush_db = couch["sensorpush"]
for sd in sensor_documents:
# Check if there already is a document for the sensor & date combination
view_call = sensorpush_db.view("entire_document/by_sensor_id_and_date")[
sd.sensor_id, sd.start_date_midnight
]
sd_dict = sd.format_for_statusdb()
if view_call.rows:
sd_dict = SensorDocument.merge_with(sd_dict, view_call.rows[0].value)
if push:
logging.info(f'Saving {sd_dict["sensor_name"]} to statusdb')
try:
sensorpush_db.save(sd_dict)
except Exception as e:
logging.error(
f"Error saving {sd_dict['sensor_name']} to statusdb: {e}"
)
raise e
else:
logging.info(f'Printing {sd_dict["sensor_name"]} to stderr')
print(sd_dict)
except Exception as e:
logging.exception(f"Error in main: {e}")
raise
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--samples",
"-s",
type=int,
default=60,
help=("Nr of samples that will be fetched" "default value is 60 e.g. 1 hour."),
)
parser.add_argument(
"--start_time",
type=str,
default=None,
help=(
"Collect samples starting from this UTC(!) time, "
"by default, yesterday at midnight is used."
),
)
parser.add_argument(
"--statusdb_config",
default="~/conf/statusdb_cred.yaml",
help="StatusDB config file, default is ~/conf/statusdb_cred.yaml",
)
parser.add_argument(
"--config",
"-c",
default="~/conf/sensorpush_cred.yaml",
help="Sensorpush credentials, default is ~/conf/sensorpush_cred.yaml",
)
parser.add_argument(
"--logfile",
"-l",
default="~/log/sensorpush_script/to_statusdb.log",
help="Logfile used",
)
parser.add_argument(
"--push",
"-p",
action="store_true",
help="Push to statusdb, otherwise just print to terminal",
)
parser.add_argument(
"--verbose",
"-v",
action="store_true",
help="Use this tag to enable detailed logging.",
)
parser.add_argument(
"--no-wait",
action="store_true",
help="Do not wait for 60 seconds between requests, useful for testing.",
)
args = parser.parse_args()
logging.basicConfig(
filename=os.path.abspath(os.path.expanduser(args.logfile)),
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# Handler that will log errors to stderr
stderr_handler = logging.StreamHandler()
stderr_handler.setLevel(logging.ERROR)
logger.addHandler(stderr_handler)
# Genomics status wants 1 document per day, so this is the way to enforce that,
# should potentially be fixed in the future
assert args.samples <= 1440
main(
args.samples,
args.start_time,
os.path.abspath(os.path.expanduser(args.statusdb_config)),
os.path.abspath(os.path.expanduser(args.config)),
args.push,
args.verbose,
args.no_wait,
)