-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
56 lines (47 loc) · 1.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import math
# from sympy import Eq, solve
# from sympy.abc import w, x, y, z
# theta = math.atan2(-4, 0) * 180/pi
# print(theta)
# def quad(a,b,c):
# dscrmnnt = math.pow(b,2) - 4*a*c
# if dscrmnnt < 0:
# print("no real solutions")
# return None
# sol_1 = (-b + math.sqrt(dscrmnnt))/(2*a)
# sol_2 = (-b - math.sqrt(dscrmnnt))/(2*a)
# # # return sol_1, sol_2
# sol = solve([ Eq(x + 4*y, 13),
# Eq(2*x + y, 5),
# ])
# print(sol)
# print({ s:sol[s].evalf() for s in sol })
def simul(a1, b1, c1, a2, b2, c2):
"""
this solves the simul equations of the form:
a_1x + b_1y = c_1
a_2x + b_2y = c_2
"""
# write y in terms of x then solve for y.
"""
y = (c1- a1x)/b1
a2x + b_2 ((c1-a1x)/b1) = c2
b1*a2x + b2*c1 -b2*a1x = b1*c2
x (b1*a2 - b2*a1) = b1*c2 -b2*c1
"""
# exp1 = b1*a2 - b2*a1
# exp2 = b1*c2 - b2*c1
# x = exp1/exp2
# exp3 = c1 - a1*x
# y = exp3/b1
x = (b1*a2 - b2*a1)/(b1*c2 - b2*c1)
y = (c1 - a1*x)/b1
return x, y
def dot(v, u):
"""v and u are vectors. v and u -> list"""
vx, vy = v[0], v[1]
ux, uy = u[0], u[1]
dotproduct = vx*ux + vy*uy
return dotproduct
# solution = simul(1, 4, 13, 2, 1, 5)
# print(solution)