-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbaseline.py
651 lines (549 loc) · 20.7 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.nn.init as init
from torchvision import models, transforms
from torch.utils.data import Dataset, DataLoader
from torch.nn import DataParallel
from torch.utils.data import Sampler
from PIL import Image, ImageOps
import torchvision.transforms.functional as TF
import torch.nn.functional as F
import pickle
import numpy as np
import argparse
import copy
import random
import numbers
import os
from train_val import train, val
## fix seed to get result reproducibility
def seed_everything(seed=42):
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
parser = argparse.ArgumentParser(description="GradCAM model training")
parser.add_argument(
"--multiple_gpu", default=True, type=bool, help="use multiple gpu, default True"
)
parser.add_argument(
"--method",
default="non-temporal",
type=str,
help="data input method, choices: temporal, non-temporal",
)
parser.add_argument(
"--model",
default="ResNet50",
type=str,
help="multiple choices: ResNet50, DenseNet121, STGCN, LSTM",
)
parser.add_argument(
"--cls", default=11, type=int, help="number of class in dataset, default 11"
)
parser.add_argument(
"--seq",
default=3,
type=int,
help="sequence length (applicable for temporal method only), default 3",
)
parser.add_argument(
"--imgh", default=256, type=int, help="height of image, default 256"
)
parser.add_argument("--imgw", default=320, type=int, help="width of image, default 320")
parser.add_argument("--epoch", default=200, type=int, help="epochs to train and val")
parser.add_argument("--bs", default=170, type=int, help="batch size")
parser.add_argument(
"--lr",
default=0.00001,
type=float,
help="learning rate for optimizer, default 1e-3",
)
parser.add_argument(
"--dropout",
default=False,
type=bool,
help="apply dropout to the classification model",
)
parser.add_argument(
"--work", default=4, type=int, help="num of workers to use, default 4"
)
parser.add_argument("--save", default=True, type=bool, help="save checkpoint")
parser.add_argument(
"--load", default=False, type=bool, help="load checkpoint to resume training"
)
parser.add_argument(
"--finetune", default=False, type=bool, help="fine tune from a pre-trained model"
)
parser.add_argument(
"--pretrain_model",
default="ResNet50_256,320_170",
type=str,
help="pre-trained model name",
)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
### to run on multiple gpus
if args.multiple_gpu == True:
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2"
## check if it is possible to run on multiple gpu
num_gpu = torch.cuda.device_count()
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
num_gpu = 1
## decide for the sequence length based on method defined
if args.method == "temporal":
sequence_length = args.seq
elif args.method == "non-temporal":
sequence_length = 1
else:
print("Invalid method defined")
print("==============================")
print("model :", args.model)
print("method :", args.method)
print("==============================")
print("number of gpu : {:6d}".format(args.multiple_gpu))
print("number of class : {:6d}".format(args.cls))
print("sequence length : {:6d}".format(sequence_length))
print("image size H : {:6d}".format(args.imgh))
print("image size W : {:6d}".format(args.imgw))
print("num of epochs : {:6d}".format(args.epoch))
print("batch size : {:6d}".format(args.bs))
print("learning rate : {:.4f}".format(args.lr))
print("num of workers : {:6d}".format(args.work))
print("dropout : ", args.dropout)
print("save checkpoint : ", args.save)
print("load checkpoint : ", args.load)
print("fine-tune : ", args.finetune)
print("pre-trained model : ", args.pretrain_model)
print("==============================")
def pil_loader(path):
with open(path, "rb") as f:
with Image.open(f) as img:
return img.convert("RGB")
class RandomCrop(object):
def __init__(self, size, padding=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.count = 0
def __call__(self, img):
if self.padding > 0:
img = ImageOps.expand(img, border=self.padding, fill=0)
w, h = img.size
th, tw = self.size
if w == tw and h == th:
return img
random.seed(self.count // sequence_length)
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
self.count += 1
return img.crop((x1, y1, x1 + tw, y1 + th))
class RandomHorizontalFlip(object):
def __init__(self):
self.count = 0
def __call__(self, img):
seed = self.count // sequence_length
random.seed(seed)
prob = random.random()
self.count += 1
# print(self.count, seed, prob)
if prob < 0.5:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img
class RandomRotation(object):
def __init__(self, degrees):
self.degrees = degrees
self.count = 0
def __call__(self, img):
seed = self.count // sequence_length
random.seed(seed)
self.count += 1
angle = random.randint(-self.degrees, self.degrees)
return TF.rotate(img, angle)
class ColorJitter(object):
def __init__(self, brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
self.count = 0
def __call__(self, img):
seed = self.count // sequence_length
random.seed(seed)
self.count += 1
brightness_factor = random.uniform(1 - self.brightness, 1 + self.brightness)
contrast_factor = random.uniform(1 - self.contrast, 1 + self.contrast)
saturation_factor = random.uniform(1 - self.saturation, 1 + self.saturation)
hue_factor = random.uniform(-self.hue, self.hue)
img_ = TF.adjust_brightness(img, brightness_factor)
img_ = TF.adjust_contrast(img_, contrast_factor)
img_ = TF.adjust_saturation(img_, saturation_factor)
img_ = TF.adjust_hue(img_, hue_factor)
return img_
class CholecDataset(Dataset):
"""Dataset class for Grad-CAM model
input: images directory, intruments annotations, transform configurations, image loader
output: image and label
note: modified from https://github.com/YuemingJin/TMRNet/blob/main/code/Training%20memory%20bank%20model/train_singlenet_phase_1fc.py
"""
def __init__(self, file_paths, file_labels, transform=None, loader=pil_loader):
self.file_paths = file_paths
self.file_labels_tool = file_labels[:, 0]
self.transform = transform
self.loader = loader
def __getitem__(self, index):
img_names = self.file_paths[index]
labels_tool = self.file_labels_tool[index]
imgs = self.loader(img_names)
if self.transform is not None:
imgs = self.transform(imgs)
return imgs, labels_tool
def __len__(self):
return len(self.file_paths)
class resnet_lstm(torch.nn.Module):
def __init__(self):
super(resnet_lstm, self).__init__()
resnet = models.resnet50(pretrained=True)
self.share = torch.nn.Sequential()
self.share.add_module("conv1", resnet.conv1)
self.share.add_module("bn1", resnet.bn1)
self.share.add_module("relu", resnet.relu)
self.share.add_module("maxpool", resnet.maxpool)
self.share.add_module("layer1", resnet.layer1)
self.share.add_module("layer2", resnet.layer2)
self.share.add_module("layer3", resnet.layer3)
self.share.add_module("layer4", resnet.layer4)
self.share.add_module("avgpool", resnet.avgpool)
self.lstm = nn.LSTM(2048, 512, batch_first=True)
self.fc = nn.Linear(512, args.cls)
self.dropout = nn.Dropout(p=0.2)
init.xavier_normal_(self.lstm.all_weights[0][0])
init.xavier_normal_(self.lstm.all_weights[0][1])
init.xavier_uniform_(self.fc.weight)
def forward(self, x):
x = x.view(
-1, 3, args.imgh, args.imgw
) # [batch_size, seq_len, image_size_H, image_size_W]
x = self.share.forward(x) # [batch_size*seq_len, 2048, 1, 1]
x = x.view(-1, sequence_length, 2048) # [batch_size, seq_len, 2048]
self.lstm.flatten_parameters()
y, _ = self.lstm(x) # [batch_size, seq_len, 512]
y = y.contiguous().view(-1, 512) # [batch_size*seq_len, 512]
y = self.dropout(y)
y = self.fc(y) # [batch_size*seq_len, num_class]
return y
def get_useful_start_idx(sequence_length, list_each_length):
"""get the start index of every set of the image sequence
example:
index = get_useful_start_idx(sequence_length = 3, list_each_length = [4,5])
idx of all image sequence: [[0,1,2],[1,2,3],[4,5,6],[5,6,7],[6,7,8]]
index = [0, 1, 4, 5, 6]
Input: sequence_length (int), number of frames in each sequence
Output: index of the first frame in each set image sequence
"""
count = 0
idx = []
for i in range(len(list_each_length)):
for j in range(count, count + (list_each_length[i] + 1 - sequence_length)):
idx.append(j)
count += list_each_length[i]
return idx
def get_data(data_path):
"""prepare the data for dataloader
input: pickle file containing data directory and labels
output: training dataset, number of train images in each sequence, validation dataset, number of val images in each sequences
"""
with open(data_path, "rb") as f:
train_test_paths_labels = pickle.load(f)
train_paths_40 = train_test_paths_labels[0]
val_paths_40 = train_test_paths_labels[1]
train_labels_40 = train_test_paths_labels[2]
val_labels_40 = train_test_paths_labels[3]
train_num_each_40 = train_test_paths_labels[4]
val_num_each_40 = train_test_paths_labels[5]
train_labels_40 = np.asarray(train_labels_40, dtype=np.int64)
val_labels_40 = np.asarray(val_labels_40, dtype=np.int64)
train_transforms = None
test_transforms = None
train_transforms = transforms.Compose(
[
transforms.Resize((args.imgh, args.imgw)),
ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.05),
RandomHorizontalFlip(),
RandomRotation(5),
transforms.ToTensor(),
transforms.Normalize(
[0.46641618, 0.34214595, 0.36506417],
[0.20304796, 0.18248262, 0.19647568],
),
]
)
test_transforms = transforms.Compose(
[
transforms.Resize((args.imgh, args.imgw)),
transforms.ToTensor(),
transforms.Normalize(
[0.46641618, 0.34214595, 0.36506417],
[0.20304796, 0.18248262, 0.19647568],
),
]
)
train_dataset_40 = CholecDataset(train_paths_40, train_labels_40, train_transforms)
val_dataset_40 = CholecDataset(val_paths_40, val_labels_40, test_transforms)
return train_dataset_40, train_num_each_40, val_dataset_40, val_num_each_40
class SeqSampler(Sampler):
"""sample the data for dataloader according to the index
input: data source, index of all frames in every sequence set
"""
def __init__(self, data_source, idx):
super().__init__(data_source)
self.data_source = data_source
self.idx = idx
def __iter__(self):
return iter(self.idx)
def __len__(self):
return len(self.idx)
def train_model(train_dataset, train_num_each, val_dataset, val_num_each):
(train_dataset_40), (train_num_each_40), (val_dataset_40), (val_num_each_40) = (
train_dataset,
train_num_each,
val_dataset,
val_num_each,
)
"""-----------------------------------------------------------------------------------------------
Dataset Preparation
---------------------------------------------------------------------------------------------------
"""
# get the start index of every set of the image sequence
train_useful_start_idx_40 = get_useful_start_idx(sequence_length, train_num_each_40)
val_useful_start_idx_40 = get_useful_start_idx(sequence_length, val_num_each_40)
# number of the image sequence set
num_train_we_use_40 = len(train_useful_start_idx_40)
num_val_we_use_40 = len(val_useful_start_idx_40)
train_we_use_start_idx_40 = train_useful_start_idx_40
val_we_use_start_idx_40 = val_useful_start_idx_40
# get all index of every element in image sequence set
# example: [0, 1, 2, 1, 2, 3, 4, 5, 6, 5, 6, 7, 6, 7, 8]
train_idx = []
for i in range(num_train_we_use_40):
for j in range(sequence_length):
train_idx.append(train_we_use_start_idx_40[i] + j)
val_idx = []
for i in range(num_val_we_use_40):
for j in range(sequence_length):
val_idx.append(val_we_use_start_idx_40[i] + j)
num_train_all = len(train_idx)
num_val_all = len(val_idx)
print(
"num train start idx 40: {:6d}".format(len(train_useful_start_idx_40))
) # total train frame - [(sequence_len-1)*num_video]
print(
"num of all train use: {:6d}".format(num_train_all)
) # number of image sequence set * sequence_len
print("num of all valid use: {:6d}".format(num_val_all))
val_loader = DataLoader(
val_dataset_40,
batch_size=args.bs,
sampler=SeqSampler(val_dataset_40, val_idx),
num_workers=args.work,
pin_memory=False,
)
"""-------------------------------------------------------------------------------------------
Model Selection and Configurations
----------------------------------------------------------------------------------------------
"""
if args.model == "ResNet50":
model = models.resnet50(pretrained=True)
elif args.model == "ResNet101":
model = models.resnet101(pretrained=True)
elif args.model == "ResNet+LSTM":
model = resnet_lstm()
if args.dropout:
model.fc = nn.Sequential(
nn.Dropout(0.2), nn.Linear(model.fc.in_features, args.cls)
)
else:
model.fc = nn.Linear(model.fc.in_features, args.cls)
if args.finetune:
# To load cholec80 pretrained model
model.fc = nn.Linear(2048, 11)
model = DataParallel(model)
pretrained_model_path = (
"./best_model_checkpoints/"
+ args.pretrain_model
+ "/"
+ args.pretrain_model
+ "_best_checkpoint.pth.tar"
)
model.load_state_dict(torch.load(pretrained_model_path))
model = model.module
model.fc = nn.Linear(model.fc.in_features, args.cls)
if args.multiple_gpu:
model = DataParallel(model)
model.to(device)
else:
model.to(device)
# 1. BCELoss plus a Sigmoid function operation will get BCEWithLogitsLoss.
# 2. MultiLabelSoftMarginLoss and BCEWithLogitsLoss are the same from the formula.
# https://www.programmersought.com/article/33036452919/#class-torchnnmultilabelsoftmarginlossweightnone-size_averagetruesource
criterion_tool = nn.MultiLabelSoftMarginLoss()
optimizer = optim.SGD(
model.parameters(),
lr=args.lr,
momentum=0.9,
nesterov=False,
weight_decay=0.0001,
)
exp_lr_scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer, factor=0.95, patience=3, mode="min"
)
"""--------------------------------------------------------------------------------------------------------
Saving and loading checkpoints to resume training
-----------------------------------------------------------------------------------------------------------
"""
result_filename = (
"miccai2018_11class_cholec_"
+ args.model
+ "_"
+ str(args.imgh)
+ ","
+ str(args.imgw)
+ "_"
+ str(args.bs)
+ "_lr_"
+ str(args.lr)
)
save_path = "./best_model_checkpoints/" + result_filename + "/"
if not os.path.exists(save_path):
print("The new directory is created:", save_path)
os.mkdir(save_path)
print("Save path:", save_path)
checkpoint_path = save_path + result_filename + "_checkpoint.pt"
best_checkpoint_path = save_path + result_filename + "_best_checkpoint.pth.tar"
if args.load == True:
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
epoch = checkpoint["epoch"]
best_epoch = checkpoint["best_epoch"]
best_mAP = checkpoint["best_mAP"]
InfoList = checkpoint["info_list"]
print(
"Last training epoch:"
+ str(epoch)
+ " Last testing loss:"
+ str(InfoList[epoch + 1][6])
)
print("Last best epoch:" + str(best_epoch) + " Last best mAP:" + str(best_mAP))
epoch += 1
else:
best_epoch = 0
best_mAP = 0.0
epoch = 0
InfoList = [
[
"epoch",
"lr",
"train_mean_loss",
"train_acc",
"train_mAP",
"train_elapsed_time",
"val_mean_loss",
"val_acc",
"val_mAP",
"val_elapsed_time",
]
]
"""--------------------------------------------------------------------------------------------------
Training and Validation
-----------------------------------------------------------------------------------------------------
"""
while epoch in range(args.epoch):
torch.cuda.empty_cache()
np.random.shuffle(train_we_use_start_idx_40)
train_idx_40 = []
for i in range(num_train_we_use_40):
for j in range(sequence_length):
train_idx_40.append(train_we_use_start_idx_40[i] + j)
train_loader_40 = DataLoader(
train_dataset_40,
batch_size=args.bs,
sampler=SeqSampler(train_dataset_40, train_idx_40),
num_workers=args.work,
pin_memory=False,
)
lr = optimizer.param_groups[0]["lr"]
tempInfo = [epoch, lr]
trainInfo = train(
args,
epoch,
num_train_all,
model,
train_loader_40,
optimizer,
criterion_tool,
)
valInfo = val(args, epoch, num_val_all, model, val_loader, criterion_tool)
tempInfo.extend(trainInfo)
tempInfo.extend(valInfo)
InfoList.append(tempInfo)
val_mAP = valInfo[2]
if val_mAP > best_mAP:
best_mAP = val_mAP
best_epoch = epoch
if args.save == True:
best_model = copy.deepcopy(model)
torch.save(best_model.state_dict(), best_checkpoint_path)
print(
"epoch: {} Acc: {:.4f} mAP: {:.4f} best epoch: {} best mAP: {:.4f} val loss: {:.6f} lr: {:.6f}".format(
epoch,
valInfo[1],
valInfo[2],
best_epoch,
best_mAP,
valInfo[0],
optimizer.param_groups[0]["lr"],
)
)
# save every epoch
if args.save == True:
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"best_epoch": best_epoch,
"best_mAP": best_mAP,
"info_list": InfoList,
},
checkpoint_path,
)
np.savetxt(
save_path + result_filename + "_info_list.csv",
InfoList,
delimiter=", ",
fmt="% s",
)
val_mean_loss = valInfo[0]
exp_lr_scheduler.step(val_mean_loss)
epoch += 1
def main():
seed_everything()
train_dataset_40, train_num_each_40, val_dataset_40, val_num_each_40 = get_data(
"./miccai2018_train_val_paths_labels_adjusted.pkl"
)
train_model(
(train_dataset_40), (train_num_each_40), (val_dataset_40), (val_num_each_40)
)
if __name__ == "__main__":
main()
print("Done")
print()