We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我在PaddleClas中使用safety_helmet/PPLCNet_x1_0.yaml 配置文件训练自己的数据集(一共两类),
Global: checkpoints: null pretrained_model: null output_dir: ./output/ device: gpu save_interval: 1 eval_during_train: True eval_interval: 1 epochs: 20 print_batch_step: 10 use_visualdl: False
image_shape: [3, 224, 224] save_inference_dir: ./inference
Arch: name: PPLCNet_x1_0 pretrained: True use_ssld: True class_num: 2 use_sync_bn : True
Loss: Train: - CELoss: weight: 1.0 epsilon: 0.1 Eval: - CELoss: weight: 1.0
Optimizer: name: Momentum momentum: 0.9 lr: name: Cosine learning_rate: 0.025 warmup_epoch: 5 regularizer: name: 'L2' coeff: 0.00003
DataLoader: Train: dataset: name: ImageNetDataset image_root: ./dataset/normal_sleep cls_label_path: ./dataset/normal_sleep/train_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - RandCropImage: size: 176 - RandFlipImage: flip_code: 1 - TimmAutoAugment: prob : 0.5 config_str: rand-m9-mstd0.5-inc1 interpolation: bicubic img_size : 176 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - RandomErasing: EPSILON : 0.1 r1 : 0.3 sh : 1.0/3.0 sl : 0.02 attempt : 10 use_log_aspect : True mode : pixel sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: True loader: num_workers: 8 use_shared_memory: True
Eval: dataset: name: ImageNetDataset image_root: ./dataset/normal_sleep cls_label_path: ./dataset/normal_sleep/val_list.txt transform_ops: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' sampler: name: DistributedBatchSampler batch_size: 64 drop_last: False shuffle: False loader: num_workers: 4 use_shared_memory: True
Infer: infer_imgs: sleep3.jpg batch_size: 1 transforms: - DecodeImage: to_rgb: True channel_first: False - ResizeImage: resize_short: 256 - CropImage: size: 224 - NormalizeImage: scale: 1.0/255.0 mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: '' - ToCHWImage: PostProcess: name: ThreshOutput threshold: 0.5 label_0: sleep label_1: normal
Metric: Train: - TopkAcc: topk: [1] Eval: - TprAtFpr: max_fpr: 0.0001 - TopkAcc: topk: [1]
直接在PaddleClas中使用python tools/train.py -c ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml -o Arch.pretrained=True进行训练,因为图片较少,所以只训练了20轮top1就很高了,直接使用训练获得的best model进行预测python3 tools/infer.py -c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml -o Global.pretrained_model=output/best_model,图片为配置文件中的默认图片,结果是正确的,但是当我将这个模型导出python tools/export_model.py -c ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml -o weights=output/best_model,再应用到pphuman中时,修改配置文件 使用pipeline进行测试,效果很差,而且测试用的视频就是训练集,但仍然预测不对。
The text was updated successfully, but these errors were encountered:
导出后的模型,使用PaddleClas的deploy进行推理预测,结果正确吗?
Sorry, something went wrong.
TingquanGao
lyuwenyu
No branches or pull requests
问题确认 Search before asking
请提出你的问题 Please ask your question
我在PaddleClas中使用safety_helmet/PPLCNet_x1_0.yaml 配置文件训练自己的数据集(一共两类),
global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 20
print_batch_step: 10
use_visualdl: False
used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
model architecture
Arch:
name: PPLCNet_x1_0
pretrained: True
use_ssld: True
class_num: 2
use_sync_bn : True
loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
epsilon: 0.1
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.025
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.00003
data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: ./dataset/normal_sleep
cls_label_path: ./dataset/normal_sleep/train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 176
- RandFlipImage:
flip_code: 1
- TimmAutoAugment:
prob : 0.5
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size : 176
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON : 0.1
r1 : 0.3
sh : 1.0/3.0
sl : 0.02
attempt : 10
use_log_aspect : True
mode : pixel
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: True
loader:
num_workers: 8
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
image_root: ./dataset/normal_sleep
cls_label_path: ./dataset/normal_sleep/val_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: sleep3.jpg
batch_size: 1
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: ThreshOutput
threshold: 0.5
label_0: sleep
label_1: normal
Metric:
Train:
- TopkAcc:
topk: [1]
Eval:
- TprAtFpr:
max_fpr: 0.0001
- TopkAcc:
topk: [1]
直接在PaddleClas中使用python tools/train.py -c ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml -o Arch.pretrained=True进行训练,因为图片较少,所以只训练了20轮top1就很高了,直接使用训练获得的best model进行预测python3 tools/infer.py -c ./ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml -o Global.pretrained_model=output/best_model,图片为配置文件中的默认图片,结果是正确的,但是当我将这个模型导出python tools/export_model.py -c ppcls/configs/PULC/safety_helmet/PPLCNet_x1_0.yaml -o weights=output/best_model,再应用到pphuman中时,修改配置文件
使用pipeline进行测试,效果很差,而且测试用的视频就是训练集,但仍然预测不对。
The text was updated successfully, but these errors were encountered: